Le rette.

Slides:



Advertisements
Presentazioni simili
Definizione e proprietà del parallelogramma
Advertisements

Rette perpendicolari Due rette r e s si dicono perpendicolari se, incontrandosi, formano quattro angoli fra loro congruenti; ciascuno di questi angoli.
Funzioni di due variabili
Sistema di riferimento sulla retta
Cap. 3 Il piano Cartesiano
Che cosa è la geometria ELEMENTI DI GEOMETRIA
Oggi le ... n ... comiche.
Il Triangolo.
Cap. 5 I segmenti.
Segmenti.
I Poligoni.
Definizione di combinazione
Cap. 12 Area dei quadrilateri e del triangolo
Cap. 11 I Quadrilateri.
Geometria analitica dello spazio
I QUADRILATERI “Per geometria non intendo lo studio artificioso di
GEOMETRIA IPERBOLICA.
STEREOS: SOLIDO METRIA: MISURAZIONE
Il linguaggio della geometria
a’ = f(a) Definizione e proprietà
Elementi di Matematica
1 La circonferenza e il cerchio 1 circonferenza
GEOMETRIA SOLIDA o STEREOMETRIA
geometria euclidea Realizzato dall’alunna: PARIMBELLI ILARIA
GEOMETRIA EUCLIDEA POSTULATI SULLA RETTA A • B •
GEOMETRIA SOLIDA.
“Il Piano cartesiano e la retta” realizzato dagli studenti della 2ª B Aielli Luca Pasquini Daniele Rosato Anna.
corso DI GEOMETRIA DESCRITTIVA
RETTA PERPENDICOLARE AD UNA RETTA DATA PASSANTE PER PUNTO ESTERNO
L’ellisse come luogo di punti
IL PUNTO
La Retta.
I primi elementi della geometria
Angolo Geometria.
Il Piano Cartesiano .
ELEMENTI DI GEOMETRIA EUCLIDEA NELLO SPAZIO
GEOMETRIA EUCLIDEA o RAZIONALE
RETTE E PIANI NELLO SPAZIO
Elementi di Geometria Geometria.
CONICHE 1. coniche come “luoghi solidi” 1.1 le coniche di Menecmo
Cap. 13 Cerchio e circonferenza
TEOREMA Se due rette, tagliate da una trasversale, formano una coppia di angoli alterni interni congruenti, allora, gli angoli esterni sono congruenti,
Aprile 2011 – Classe:1^D(LS) Alunno: Sausto Matteo
× × = 1 ESEMPI DI LUOGHI GEOMETRICI Luoghi geometrici
LE COSTRUZIONI GEOMETRICHE ELEMENTARI 1
Luogo geometrico Definizione: un luogo geometrico di punti è l'insieme di tutti e soli i punti che soddisfano una certa proprietà p (detta caratteristica.
Illustrazione dal “Paradiso Perduto” di Milton (libro VII)
Circonferenza e cerchio
Elementi fondamentali della
IL PUNTO
I Poligoni.
LE RETTE PARALLELE.
Prof.ssa Carolina Sementa
Trasformazioni geometriche
GEOMETRIA PIANA: ASSIOMI E POSTULATI
I Poligoni.
APPUNTI DI GEOMETRIA ANALITICA DELLA RETTA
IL PIANO CARTESIANO E LA RETTA
Luogo geometrico In geometria esistono delle figure formati da punti che soddisfano a delle particolari condizioni. Queste figure costituiscono dei luoghi.
Costruzioni geometriche con GeoGebra
a’ = f(a) Definizione e proprietà
1. Le coordinate di un punto su un piano Le coordinate di un punto su un piano 2. La lunghezza e il punto medio di un segmento La lunghezza e il punto.
Luoghi di punti In geometria il termine
Le caratteristiche generali di un quadrilatero
IL CERCHIO E LA CIRCONFERENZA.
La Circonferenza. LA CIRCONFERENZA Assegnato nel piano un punto C detto Centro, si chiama circonferenza la curva piana con i punti equidistanti da C.
PRESENTAZIONE DI GEOMETRIA SOLIDA
Perpendicolarità e parallelismo
Perpendicolarità e parallelismo
Rette e segmenti.
Transcript della presentazione:

Le rette

Rette complanari Cosa significa complanare? Letteralmente che condividono lo stesso piano Consideriamo le seguenti rette r ed s Queste due rette giacciono sullo stesso piano a Definiamo complanari due rette che giacciono sullo stesso piano

Si incontrano in un punto Rette complanari Si incontrano in un punto Non si incontrano mai Rette incidenti Rette parallele sono sono Rette perpendicolari Rette coincidenti casi particolari casi particolari

Rette incidenti Due rette complanari posso incontrarsi in un punto Consideriamo la figura seguente Le rette r ed s si incontrano nel punto P Due rette appartenenti ad un piano a si dicono incidenti se si incontrano in un punto

Perpendicolare ad una retta data passante per un suo punto Consideriamo 2 rette incidenti a e b che si incontrano in modo da dare origine a quattro angoli congruenti nel punto D Chiamiamo queste rette perpendicolari Quale sarà la definizione di rette perpendicolari? Due rette sono perpendicolari quando incontrandosi formano quattro angoli retti b ┴ a ┴ simbolo di perpendicolarità Leggiamo che la rette a è perpendicolare alla retta b

Costruzione di una perpendicolare È data una retta r e un punto P si di essa Prendo un compasso di apertura a piacere e punto su P e faccio due archi sulla retta e trovo i punti A e B Punto su A con apertura di compasso AB e faccio due archi sopra e sotto la retta r Punto in B e ripeto l’operazione

I due archi si incontrano nei punti C e D La retta s passante per i punti CPD sarà perpendicolare alla retta r nel punto P

Per rispondere a questa domanda ce ne dobbiamo fare un’altra: Su una retta quante posso fare l’operazione precedente su una retta? Siccome il punto lo posso mettere dove voglio e la retta ha infiniti punti le perpendicolari saranno infinite Data una retta r sul piano alfa esistono infinite rette perpendicolari ad essa

Perpendicolare ad una retta passante per un punto E data una retta r e un punto P appartenenti entrambe al piano alfa con P non appartenente ad r r et P a e P r Quante perpendicolari ad r passanti per P posso tracciare? La prima domanda che mi posso fare è questa: quante rette passano per un punto?

Dai postulati di Euclide sappiamo che per un punto passano infinite rette Ora ci possiamo fare la seguente domanda: quante di queste rette somo perpendicolari ad r? È facile vedere che ci sarà una sola retta che partendo da P risulterà perpendicolare ad r Perché? Solo una taglia r formando angoli congruenti Data una retta r ed un punto P esterna ad essa e appartenente al medesimo piano, dal punto P posso tracciare una ed una sola retta perpendicolare ad r

Piede della perpendicolare Consideriamo una retta r e una sua perpendicolare Le due rette si incontreranno nel punto P Tale punto prende il nome di piede della perpendicolare Si dice piede della perpendicolare il punto in cui retta e perpendicolare si incontrano s P r

Rette parallele r s Consideriamo due rette r e s appartenente ad un piano a e non eventi alcun punto in comune Chiamiamo queste due rette parallele a Due rette si dicono parallele se sono complanari e se non hanno alcun punto in comune

Retta parallela ad una retta data e passante per un punto E data una retta r e un punto P appartenenti entrambe al piano alfa con P non appartenente ad r r et P ε e P ε r Quante parallele ad r passanti per P posso tracciare? Delle infinite rette passanti per P solo una non incontrerà la retta r Data una retta r e un punto P esterno ad essa esiste una ed una sola retta parallela ad r passante per P P s r

Rette coincidenti Consideriamo la retta r appartenente al piano a Immaginiamo ora di disegnare si di essa un’altra retta s Cosa possiamo vedere? Le due rette toccano esattamente gli stessi punti del piano In linguaggio specifico abbiamo che i punti dell’una sono anche punti dell’altra Due rette sono coincidenti se condividono gli stessi punti del piano s

Proiezione di un punto su una retta Proiettare significa buttare avanti una cosa, potremmo pensare di lanciare P contro una retta, ma in che modo? Consideriamo una retta r e un punto P sterno ad essa appartenenti entrambi al piano a Conduciamo la perpendicolare ad r passante per il punto P Tale retta incontra la retta R nel punto O Il punto O è la proiezione di P su r P s r O a La proiezione di un punto su una retta è il punto in cui la sua perpendicolare passante per il punto taglia la retta

Proiezione di un segmento su una retta: premesse Siccome il segmento contiene infiniti punti per proiettarlo io doveri compiere infinite volte l’operazione precedente Questo è assurdo La successiva diapositiva farà vedere come risolvere il problema

Proiezione di un segmento su una retta Consideriamo una retta r e una segmento P appartenenti entrambi al piano a Per proiettare in segmento sulla retta basta proiettare i suoi estremi sulla retta r Troviamo i punti A’ e B’ Il segmento A’B’ sarà la proiezione di AB su r A B A’ B’ r a Per proiettare un segmento su una retta basta trovare le proiezioni dei suoi due punti estremi e prendere in considerazione il segmento risultante http://www.terminus2.net/appunti/geometria/cabri/proiezioni.php

Asse di un segmento Consideriamo il segmento AB e sia M il suo punto medio Quali saranno le caratteristiche di M? Consideriamo ora la perpendicolare ad AB passante per M Chiamiamo questa perpendicolare asse del segmento L’asse di un segmento è il luogo geometrico dei punti equidistanti dai suoi estremi http://www.math.it/cabri/asse.htm

Luogo geometrico Ma che bestia è……. Il luogo geometrico è dato dall’insieme dei punti del piano che hanno una qualche proprietà Es. punti equidistanti dai vertici di un segmento

Rette sghembe s Consideriamo un piano a una retta ad esso complanare e una retta s che incontra il pano nel punto P Com’è la retta s rispetto al piano a Si tratta di una retta incidente Come sono le rette r ed s Hanno punti in comune? No allora sono parallele? No! È stato dimostrato che esistono rette che non hanno punti in comune e che non sono parallele a r P Due rette che non hanno punti in comune e che appartengono a piani diversi si dicono sghembe

Fascio di rette Esistono due tipi di fasci di rette Il fascio di rette proprio Il fascio di rette improprio

Fascio proprio di rette Consideriamo un punto P in un piano a Come sappiamo per il punto P del piano passano infinite rette Se ci troviamo in una situazione zerodimensionale quante rette passano per il punto P? Se ci troviamo in una situazione unidimensionale quante rette passano per il punto P? P a Definiamo fascio proprio di rette l’insieme delle rette passanti per il punto P

Fascio improprio di rette Consideriamo una retta r appartenente al piano a Come sappiamo esistono infinite rette parallele ad r Si definisce fascio improprio di rette l’insieme delle infinite rette parallele fra loro

Distanza B A Consideriamo due oggetti A e B Possiamo unirli con varie linee di diversa lunghezza Nessuna di queste è la distanza Proviamo a tracciare la linea più corta possibile Essa risulterà immancabilmente un segmento Definiamo distanza fra due oggetti la lunghezza del segmento che li unisce

Distanza di un punto da una retta Consideriamo una retta r e un punto P sterno ad essa appartenenti entrambi al piano a Dal punto posso tracciare diversi segmenti che arrivano sulla retta r Ancora una volta dobbiamo trovare quello più piccolo per avere la distanza Conduciamo la perpendicolare ad r passante per il punto P Tale retta incontra la retta R nel punto O La distanza di P da r è data dalla lunghezza del segmento PO P s r O a La distanza di un punto da una retta è data dalla lunghezza del segmento perpendicolare che unisce il punto alla retta

Distanza fra due rette parallele Consideriamo due rette parallele r ed s appartenenti al piano a Tracciamo la perpendicolare alla retta r ed s Tale retta taglierà le due rette parallele nei punti A e B Si dice distanza fra le due rette la lunghezza del segmento AB perché è perpendicolare ad entrambe le rette t s A r B a Distanza fra rette parallele Si definisce distanza di due rette parallele la lunghezza del segmento perpendicolare alle rette date e che ha come suoi estremi punti appartenenti alle due rette

Rette parallele tagliate da una trasversale Consideriamo due rette r ed s tagliate da una trasversale t e appartenenti al piano a Si formano 8 angoli numerati da 1 a 8 Sapendo che gli angoli opposti al vertice sono congruenti quali saranno gli angoli uguali? Gli angoli 1, 2, 6, 8 sono esterni Gli angoli 3, 4, 5, 6 sono interni Le coppie 3,6 e 4,5 si trovano uno da una parte e una dall’altra perciò sono alterni interni e sono formate da angoli congruenti t s 1 2 3 4 5 r 6 7 8 a Le coppie 1,8 e 2,7 si trovano uno da una parte e una dall’altra perciò sono alterni esterni e sono formate da angoli congruenti Contributi esterni

Gli angoli che stanno dalla stessa parte di t si dicono coniugati I gruppi di angoli coniugati sono 1, 3, 5, 7 e 2, 4, 6, 8. Le coppie 3,5 e 4,6 si dicono coniugati interni Le coppie 1,7 e 2,8 si dicono coniugati esterni La caratteristica delle coppie coniugate è quella di essere supplementari Quando due angoli si dicono supplementari? Gli angoli che occupano posizioni analoghe si dicono corrispondenti t s 1 2 3 4 5 r 6 7 8 a Sono corrispondenti le seguenti coppie: 1,5;2,6; 3,7 e 4,8 Le coppie corrispondenti sono formate da angoli congruenti Quello che abbiamo detto vale per tutte le coppie di rette tagliate da una trasversale?

Riassumiamo Le coppie di angoli alterni interni e alterni esterni sono congruenti Le coppie coniugate interne ed esterne sono supplementari Le coppie di angoli corrispondenti sono congruenti t s 1 2 3 4 5 r 6 7 8 a

… e se non sono parallele? …. A voi l’interpretazione della figura Aguzzate l’ingegno e datevi da fare Come sono gli angoli alterni interni o esterni? Come sono gli angoli corrispondenti? Come sono gli angoli coniugati interni o esterni Quali angoli sono congruenti e perché t s 1 2 3 4 5 r 6 7 8 a Quali angoli sono supplementari e perché?

Definizione di rette parallele In base a quanto detto e compreso possiamo dire che: Due rette si dicono parallele se tagliate da una trasversale formano coppie di angoli alterni interni e alterni esterni congruenti; coppie coniugate interne ed esterne supplementari coppie di angoli corrispondenti congruenti