FMZ Sistemi basati su conoscenza Da logica proposizionale a logica del primo ordine Dott. Fabio Massimo Zanzotto a.a. 2001-2002.

Slides:



Advertisements
Presentazioni simili
Linguaggi  naturali e linguaggi formali Sistemi formali  
Advertisements

Calcolo Relazionale.
MEMORIZZAZIONE DI MESSAGGI
Algebra parziale con predicati
Intelligenza Artificiale
Intelligenza Artificiale
Semantica, inferenza e logica
Schemi Mappe Conoscenze
Introduzione alla Logica Modale.
Definire la comunicazione
Sistemi basati su conoscenza Conoscenza e ragionamento Prof. M.T. PAZIENZA a.a
Intelligenza Artificiale 1 Gestione della conoscenza lezione 7 Prof. M.T. PAZIENZA a.a
FMZ, Giugno 2001 Parsing del linguaggio naturale Fabio Massimo Zanzotto Università di Tor Vergata.
Intelligenza Artificiale 1 Gestione della conoscenza lezione 8
Computer, Lingue ed Applicazioni Perché comprendere tramite gli elaboratori i contenuti testuali? I testi sono i veicoli principali di significato per.
Sistemi basati su conoscenza Comunicazione basata sul linguaggio naturale Prof. M.T. PAZIENZA a.a
Introduzione alle reti semantiche R. Basili. Sistemi basati su conoscenza Fanno uso di una rappresentazione esplicita del: –Mondo/Ambiente –Dominio di.
Sistemi basati su conoscenza Esercizi Prolog
Sistemi basati su conoscenza Conoscenza e ragionamento Prof. M.T. PAZIENZA a.a
1 Le competenze di base dell'asse matematico Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico, rappresentandole anche sotto forma.
AGENTI CHE RAGIONANO LOGICAMENTE E.Mumolo
CARATTERISTICHE Un LO è un oggetto didattico e viene pensato e progettato allo scopo di fornire conoscenze specifiche, oltre che realizzare modelli dinterazione.
1 ALLOCAZIONE DELLE RISORSE. 2 per risorse di solito si intende: risorse umane con il loro patrimonio di conoscenze professionali, di esperienza e di.
Intelligenza Artificiale II Dimostrazione automatica di Teoremi
Intelligenza Artificiale
Ingegneria della conoscenza e sistemi esperti Dario Bianchi, 1999 Conoscenza e ragionamento.
Intelligenza Artificiale
Ingegneria della conoscenza e sistemi esperti Dario Bianchi, 1999 Conoscenza e ragionamento Logica dei predicati del primo ordine.
Ingegneria della conoscenza e sistemi esperti Dario Bianchi, 1999 Logica dei predicati del primo ordine.
Ingegneria della conoscenza e sistemi esperti Dario Bianchi, 1999 Inferenza nella logica dei predicati del primo ordine.
5 febbraio 2010 Prof Fabio Bonoli
Logica proposizionale Sintassi vs Semantica
Linguaggi di Programmazione Cenni di logica proposizionale
IL LAVORO SUL TESTO Si incrociano le “operazioni mentali” con i “nodi” di un testo narrativo Operazioni mentali ° Focalizzazione (identificazioni di dati.
Intelligenza Artificiale - AA 2001/2002 Logica formale (Parte 2) - 1 Intelligenza Artificiale Breve introduzione alla logica classica (Parte 2) Marco Piastra.
Intelligenza Artificiale
Intelligenza Artificiale - AA 2002/2003 Logica formale (Parte 2) - 1 Intelligenza Artificiale Breve introduzione alla logica classica (Parte 2) Marco Piastra.
Comprensione di lettura Profilo di competenza Fine quinta
Riassumendo le teorie sulla comunicazione
Logica Matematica Seconda lezione.
PROGETTO REGIONALE ELLE – EMERGENZA LINGUA- II SEMINARIO DISTRETTUALE DI RAVENNA – Ravenna, 22 novembre 2010 Pianificazione attività di Istituto Parte.
Lo sviluppo del software e i linguaggi di programmazione
Pierdaniele Giaretta Linguaggio della logica predicativa
COMUNICAZIONE: PROBLEMI E STRATEGIE Marco Galiano
Agenti logici: calcolo proposizionale Maria Simi a.a. 2008/2009.
Basi di conoscenza: cenni di logica Fabio Massimo Zanzotto.
Linguaggi e Modelli per i Dati e la Conoscenza Fabio Massimo Zanzotto.
1 Nuovo Obbligo Scolastico: Gli Assi Culturali. 2 Asse dei Linguaggi Asse Matematico Asse Scientifico-Tecnologico Asse Storico Sociale.
FMZ 1 Sistemi basati su conoscenza Costruzione automatica di ontologie di dominio Dott. Fabio Massimo Zanzotto a.a
Corso di logica matematica
“… QUESTO BAMBINO NON COMUNICA!...”
FMZ Sistemi basati su conoscenza Prolog (1) Dott. Fabio Zanzotto a.a
Cenni di Logica Fabio Massimo Zanzotto. Calcolo proposizionale.
FMZ1 Sistemi basati su conoscenza Cenni di logica proposizionale Dott. Fabio Zanzotto a.a
Formatore C.N.A.: Massimo Dima
PROGRAMMAZIONE DISCIPLINARE CLASSI SECONDE A.S MATERIA:ITALIANO DOCENTE: PELLEGRINETTI ENRICA.
Logica A.A Francesco orilia
Linguaggi e Modelli dei dati e della conoscenza “rappresentazione della conoscenza” docenti Maria Teresa PAZIENZA Fabio Masimo ZANZOTTO a.a
Logica A.A Francesco orilia
Logica Lezz Nov Reiterazione (RE) P |- P 1 P A 2 P & P 1,1, &I 3 P 2, & E.
Linguaggi e Modelli dei dati e della conoscenza Introduzione all’Intelligenza Artificiale “ragionamento automatico e logica” Maria Teresa PAZIENZA Fabio.
1 Linguaggi di Programmazione Cenni di logica proposizionale.
AOT Lab Dipartimento di Ingegneria dell’Informazione Università degli Studi di Parma Intelligenza Artificiale Rappresentazione della Conoscenza e Ragionamento.
Agenti logici: calcolo proposizionale Maria Simi a.a. 2006/2007.
Intelligenza Artificiale – M. Ornaghi 1 Lezione 17 Rappresentazione della conoscenza.
Basi di conoscenza: cenni di logica Fabio Massimo Zanzotto.
Introduzione alla LOGICA MATEMATICA Corso di Matematica Discreta. Corso di laurea in Informatica. Prof. Luigi Borzacchini III. La logica delle proposizioni.
Logica Lezione 8, DISTRIBUIRE COMPITO 1.
Logica Lezione 19, Distribuire compito 3 DATA esame in classe intermedio: Lunedì 20 aprile.
Studio ergo lavoro DIDAMATICA GENOVA 2015 Studio ergo lavoro La valutazione delle competenze nell'istruzione attraverso la lente dei progetti digitali:
Transcript della presentazione:

FMZ Sistemi basati su conoscenza Da logica proposizionale a logica del primo ordine Dott. Fabio Massimo Zanzotto a.a

FMZ Logica proposizionale Sintassi vs Semantica SintassiSemanticaMondo Concetto di modello Funzione di interpretazione Simboli FBF ASSIOMI Regole di inferenza SFSF ???

FMZ Una dimostrazione per è una sequenza DIM=P 1,P 2,…,P n P n =F P i  S P i  ASSIOMI P i è ottenibile da P i1,…,P im (con i1<i,.., im<i) applicando una regola di inferenza Sintassi vs Semantica Osservazioni S F

FMZ DIM=P 1,P 2,…,P n Problema: introduciamo sempre formule vere? P i  Svere per ipotesi P i  ASSIOMIveri poiché tautologie P i è ottenibile da P i1,…,P im (con i1<i,.., im<i) applicando una regola di inferenza Sintassi vs Semantica Osservazioni anello debole

FMZ Sintassi vs Semantica Regole di inferenza e veridicità V V F F V F V F AB V F V V ABAB V V F F V F V F AB V F F F ABAB P  B, P B MP A 1,…,A n A 1  …  A n AiAi AE AI

FMZ Sintassi vs Semantica La preservazione della veridicità è osservabile per induzione Formalmente: –(Meta)Teorema di completezza –(Meta)Teorema di Deduzione (+ Ogni teorema di L è una tautologia)

FMZ Wumpus World Domanda: E’ possibile trovare il Wumpus?

FMZ Wumpus World come và il mondo (stralcio) Se il wumpus è in una casella, si avverte la puzza nelle quattro caselle adiacenti (a croce) Se c’è una buca in una casella, si avverte la brezza nelle quattro caselle adiacenti (a croce) Se c’è l’oro, si vede luccicare nella stessa casella

FMZ Logica proposizionale e Wumpus World Abbiamo a disposizione: Informazioni: –Regole su come va il mondo (del Wumpus) –Fatti indotti dall’esplorazione Uno strumento: –Logica proposizionale

FMZ Base di conoscenza (logica) Individuare i letterali S 1,1 = Puzza nella casella 1,1 … S 4,4 = Puzza nella casella 4,4 B 1,1 = Brezza nella casella 1,1 … B 4,4 = Brezza nella casella 4,4 W 1,1 = Wumpus nella casella 1,1 … W 4,4 = Wumpus nella casella 4,4

FMZ Base di conoscenza (logica) Traduzione delle affermazioni (Regole): (R 1 ):¬S 1,1  ¬W 1,1  ¬W 1,2  ¬W 2,1 (R 2 ):¬S 2,1  ¬W 1,2  ¬W 2,1  ¬W 2,2  ¬W 3,1 (R 3 ):¬S 1,2  ¬W 1,1  ¬W 1,2  ¬W 2,2  ¬W 1,3 (R 4 ):S 1,2  W 1,3  W 1,2  W 2,2  W 1,1 ……

FMZ Base di conoscenza (logica) Traduzione delle osservazioni: ¬S 1,1 ¬B 1,1 ¬S 2,1 B 2,1 S 1,2 B 1,2 OSS

FMZ Obbiettivo (Teorema da dimostrare) Date le conoscenze, localizzare con certezza in 1,3 il Wumpus. KBW 1,3 dove KB = OSS  {R 1,R 2,R 3,R 4 }

FMZ Dimostrazione: verso l’Obbiettivo KBW 1,3 ¬S 1,1, ¬S 1,1  ¬W 1,1  ¬W 1,2  ¬W 2,1 ¬W 1,1  ¬W 1,2  ¬W 2,1 ¬W 1,1, ¬W 1,2, ¬W 2,1 MP AE =And-Elimination ¬S 2,1, ¬S 2,1  ¬W 1,2  ¬W 2,1  ¬W 2,2  ¬W 3,1 ¬W 1,2, ¬W 2,1, ¬W 2,2, ¬W 3,1 MP+AE (*) (**)

FMZ Dimostrazione: verso l’Obbiettivo KBW 1,3 S 1,2, S 1,2  W 1,3  W 1,2  W 2,2  W 1,1 W 1,3  W 1,2  W 2,2  W 1,1 MP W 1,3  W 1,2  W 2,2  W 1,1, ¬W 1,1 W 1,3  W 1,2  W 2,2 UR=Unit-Resolution (*), ¬W 2,2 (**) W 1,3  W 1,2, ¬W 1,2 (*) UR W 1,3 CVD

FMZ Conoscenzeed Eurismi Ragionamento si basa: –un insieme di conoscenze (od osservazioni) –un insieme di regole apprese detti “eurismi” Eurisma = qualunque regola mentale atta a generare o trovare qualcosa che si sta cercando Esempi “Uscire con l’ombrello quando è nuvolo” “Colpire la palla da tennis nel punto più alto della parabola di rimbalzo” “Far percepire al cliente che ha sempre ragione” “Se il capo vuole avere ragione è meglio accordargliela”

FMZ Eurismi per il Minatore E’ meglio non andare avanti se il Wumpus è di fronte. Introduzione di nuovi simboli: FORWARD= muoversi in avanti A 1,1 = Minatore nella casella 1,1 … A 4,4 = Minatore nella casella 4,4 East A = Minatore rivolto a est West A = Minatore rivolto a ovest North A = Minatore rivolto a nord South A = Minatore rivolto a sud

FMZ Eurismi per il Minatore E’ meglio non andare avanti se il Wumpus è di fronte. Traduzione dell’eurisma: A 1,1  East A  W 2,1  ¬FORWARD A 1,1  North A  W 1,2  ¬FORWARD …

FMZ Logica proposizionale (limiti) Traduzione dell’eurisma: –in un mondo 4x4 –4 direzioni per il minatore –occorrono 64 regole (se non si prevede il passato) –si potrebbe usare invece: WUMPUSAHEAD  ¬FORWARD ???

FMZ Logica proposizionale (limiti) Socrate è un uomo. Gli uomini sono mortali. (A) Allora Socrate è mortale. Traduzione di (A) nella logica proposizionale Se Gino è un uomo, allora Gino è mortale. Se Pino è un uomo, allora Pino è mortale. Se Rino è un uomo, allora Rino è mortale. Se Socrate è un uomo, allora Socrate è mortale. … Se X è un uomo, allora X è mortale.

FMZ Logica del primo ordine Sintassi Ingredienti: Simboli L –Letterali Costanti individuali A i Variabili individuali  i Lettere funzionali f i Lettere predicative P i –Connettivi Logici: { , , , ,(,)} , 

FMZ Logica del primo ordine Sintassi Ingredienti: Formule Ben Formate –Le Formule Atomiche sono FBF –Se f 1 e f 2  FBF e x è una variabile individuale allora  x.f 1  FBF  x.f 1  FBF  f 1  FBF f 1  f 2  FBF f 1  f 2  FBF f 1  f 2  FBF

FMZ Logica del primo ordine Sintassi Ingredienti: Termine T costanti individuali  T variabili individuali  T Se t 1,…,t n  T allora f i (t 1,…,t n )  T Formule Atomiche Se t 1,…,t n  T allora P i (t 1,…,t n ) è una formula atomica

FMZ Logica del primo ordine Sintassi Ingredienti: Regole di inferenza –Eliminazione del quantificatore universale –Eliminazione del quantificatore esistenziale –Introduzione del quantificatore esistenziale  x.F(…x…) SUBST({x/a},F(…x…)}  x.F(…x…) SUBST({x/a},F(…x…)} F(…a…)  x.F(…x…) Dove a non appartiene a costanti già introdotte

FMZ Logica del primo ordine Semantica Interpretazione Insieme D I(a i )= d i per ciascuna costante individuali Insieme di funzioni I(f i )= f i f i : D n  D per ciascuna lettera funzionale f i Insieme di relazioni I(P i )= P i P i  D n per ciascuna lettera predicativa P i

FMZ Logica del primo ordine Semantica Interpretazione Interpretazione delle formule atomiche –I(P i (a 1,…,a n ))=V se (I(a 1 ),…,I(a n ))  I(P i ) =Faltrimenti –I(  x.P i (a 1,…,x,…,a n ))=V se per tutti gli x  d accade che (I(a 1 ),…,x,…,I(a n ))  I(P i ) =F altrimenti

FMZ Logica del primo ordine Semantica Interpretazione Interpretazione delle formule quantificate I(  x.P i (a 1,…,x,…,a n ))=V se per tutti gli x  D accade che (I(a 1 ),…,x,…,I(a n ))  I(P i ) =F altrimenti I(  x.P i (a 1,…,x,…,a n )) =V se esiste x  D tale che (I(a 1 ),…,x,…,I(a n ))  I(P i ) =F altrimenti

FMZ Logica proposizionale vs. Logica del primo ordine “Aggiunte”: Strutturazione dei letterali Introduzione delle variabili Introduzione dei quantificatori

FMZ Logica del primo ordine Socrate è un uomo. Gli uomini sono mortali. Allora Socrate è mortale. Costanti individuali {Socrate, Pino, Gino, Rino} Lettere predicative {Uomo,Mortale}

FMZ Logica del primo ordine Socrate è un uomo. Gli uomini sono mortali. Allora Socrate è mortale. Traduzione affermazioni Uomo(Socrate)  x.(Uomo(x)  Mortale(x)) Traduzione goal Mortale(Socrate)

FMZ Logica del primo ordine  x.(Uomo(x)  Mortale(x)) (SUBST({x/Socrate},Uomo(x)  Mortale(x)) Universal Elimination Uomo(Socrate)  Mortale(Socrate), Uomo(Socrate) MP Mortale(Socrate)

FMZ Esercizi Tradurre in logica del primo oridine le affermazioni relative al mondo del wumpus –L’eurisma: non andare avanti se il Wumpus è davanti –Le regole del mondo –Provare a dimostrare che la posizione del Wumpus è 1,3 nella logica del primo ordine