FMZ1 Sistemi basati su conoscenza Cenni di logica proposizionale Dott. Fabio Zanzotto a.a. 2001-2002.

Slides:



Advertisements
Presentazioni simili
APPLICAZIONE DEL TEOREMA DI PITAGORA SU POLIGONI CON ANGOLI DI 30°-60°
Advertisements

Definizione e proprietà del parallelogramma
1 I triangoli Definizione
Risoluzione di triangoli qualsiasi
Risoluzione di triangoli qualsiasi
I.T.C.G. Mosè Bianchi Mauro Bosisio Classe A2 Geometri Anno scolastico 2000\2001.
COSTRUZIONI GEOMETRICHE ELEMENTARI 1
Congiungendo la punta dell’albero con la base, si può individuare un triangolo isoscele.
Petri Nets Controllo Supervisivo Mutua esclusione generalizzata (GMEC)
Teorema di Pitagora Con gli angoli di 45°.
Poligoni con angoli 30°e 60°
Teorema di Talete Un fascio di rette parallele determina su due trasversali classi di segmenti proporzionali. A’ A B B’ AB:BC=A’B’:B’C’ C C’
1 ESEMPIO F ~ F’’ Definizione
A.S.E.13.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 13 Alcune definizioniAlcune definizioni Algoritmo di sintesi ottima di Quine-McCluskeyAlgoritmo.
IL QUADRATO DI UN TRINOMIO
LA GEOMETRIA EUCLIDEA.
Risoluzione triangoli rettangoli!
I QUADRILATERI.
SCUOLA MEDIA STATALE “A. MENDOLA” – FAVARA – A. S
TRIANGOLI E PARALLELOGRAMMI
Poligoni di tre lati Con 6 lelementi: 3 lati e 3 angoli
Il secondo criterio di congruenza dei triangoli
A cura dei Docenti: Prof. ssa Alessandra SIA – Prof. Salvatore MENNITI.
geometria euclidea Realizzato dall’alunna: PARIMBELLI ILARIA
5 febbraio 2010 Prof Fabio Bonoli
Logica proposizionale Sintassi vs Semantica
Linguaggi di Programmazione Cenni di logica proposizionale
21 marzo 22 marzo 23 marzo 24 marzo. TCB TCB TCB marzo
I Triangoli 1E A.S. 12/13.
LEZIONI DI TRIGONOMETRIA
Logica Matematica Seconda lezione.
A cura dei Docenti: Prof sa Alessandra SIA – Prof Salvatore MENNITI
poligoni equivalenti Proprietà riflessiva A=A Proprietà simmetrica
Particolari terne numeriche e teorema di PITAGORA
ELEMENTI DI GEOMETRIA EUCLIDEA NELLO SPAZIO
Congruenza di triangoli
Il Teorema di Pitagora.
Punto nave con rilevamento polare 45° e Traverso
DIMOSTRAZIONE IPOTESI AB BC CA A,B,D allineati B,C,E allineati
Poligoni e triangoli.
Teorema Enunciato Sui prolungamenti della base AB di un triangolo isoscele ABC si considerino i due segmenti congruenti AD e BE. Dimostrare che il triangolo.
Cap. 13 Cerchio e circonferenza
segmenti e punti notevoli dei triangoli
Basi di conoscenza: cenni di logica Fabio Massimo Zanzotto.
IL TEOREMA DEL TRIANGOLO ISOSCELE (Prof. Daniele Baldissin)
Consideriamo un angolo   O.  Per semplicità consideriamo orizzontale una delle due semirette O.
Aprile 2011 – Classe:1^D(LS) Alunno: Sausto Matteo
Che cosa è un insieme convesso?
CIRCONFERENZA E CERCHIO
I TRIANGOLI Il triangolo è un poligono formato da tre angoli o vertici e da tre lati. Il triangolo è la forma geometrica con il minor numero di lati perché.
Trasformazioni non isometriche
GEOMETRIA.
FMZ Sistemi basati su conoscenza Da logica proposizionale a logica del primo ordine Dott. Fabio Massimo Zanzotto a.a
FMZ Sistemi basati su conoscenza Prolog (1) Dott. Fabio Zanzotto a.a
Cenni di Logica Fabio Massimo Zanzotto. Calcolo proposizionale.
Triangoli Classificazione Proprietà triangoli equilateri
1 Linguaggi di Programmazione Cenni di logica proposizionale.
Liceo Scientifico Tecnologico “Grigoletti” Precorsi Trigonometria
I quadrilateri e le loro proprietà
I POLIGONI Gli alunni della seconda media Istituto “ M. Ausiliatrice “
Basi di conoscenza: cenni di logica Fabio Massimo Zanzotto.
Luca Chichisola1 Dal problema al programma LUCA CHICHISOLA.
TEOREMA. In un triangolo rettangolo il quadrato costruito sull’ipotenusa è equivalente alla somma dei quadrati costruiti sui cateti. L’enunciato del teorema.
Luogo geometrico In geometria esistono delle figure formati da punti che soddisfano a delle particolari condizioni. Queste figure costituiscono dei luoghi.
I PARALLELOGRAMMI PARALLELOGRAMMI
Le trasformazioni non isometriche
PROBLEMA DI TRIGONOMETRIA Giorgio Buffa 4H
Le trasformazioni non isometriche
Transcript della presentazione:

FMZ1 Sistemi basati su conoscenza Cenni di logica proposizionale Dott. Fabio Zanzotto a.a

FMZ2 Semplice Teorema di Geometria AC B Dato un triangolo isoscele ovvero con AB=BC, si vuole dimostrare che gli angoli  e Ĉ sono uguali.

FMZ3 Semplice Teorema: conoscenze pregresse Se due triangoli sono uguali, i due triangoli hanno lati ed angoli uguali (A) Se due triangoli hanno due lati e l’angolo sotteso uguali, allora i due triangoli sono uguali (T) AC B

FMZ4 Semplice Teorema: Dimostrazione BH bisettrice di ABC cioè ABH=HBC (T2) Dimostrazione AB=BC per ipotesi ABH=HBC per T2 Il triangolo HBC è uguale al triangolo ABH per T Â=Ĉ per A AC B H

FMZ5 Semplice Teorema: Dimostrazione Abbiamo trasformato T in  Se AB=BC e BH=BH e ABH=HBC, allora il triangolo ABH è uguale al triangolo HBC A in  Se triangolo ABH è uguale al triangolo HBC, allora AB=BC e BH=BH e AH=HC e ABH=HBC e AHB=CHB e Â=Ĉ AC B H

FMZ6 Semplice Teorema: Formalizzazione Obbiettivo Razionalizzare il processo che permette affermare: AC B H AB=BCÂ=ĈÂ=Ĉ

FMZ7 Abbiamo supposto che: S={ AB=BC, ABH=HBC, BH=BH } Avevamo conoscenze pregresse: T: AB=BC  BH=BH  ABH=HBC  trABH=trHBC A: trABH=trHBC  AB=BC  BH=BH  AH=HC  ABH=HBC  AHB=CHB  Â=Ĉ Semplice Teorema: Formalizzazione AB=BCÂ=ĈÂ=Ĉ

FMZ8 Abbiamo costruito una catena di formule: P1: AB=BC da S P2: ABH=HBC da S P3: BH=BH da S P4: AB=BC  BH=BH  ABH=HBC da P1,P2,P3 e REGOLA 2 P5: trABH=trHBC da P4,T e REGOLA 1 P6: AB=BC  BH=BH  AH=HC  ABH=HBC  AHB=CHB  Â=Ĉ da P5,A e REGOLA 1 P7: Â=Ĉ da P6 e REGOLA 3 Semplice Teorema: Formalizzazione AB=BCÂ=ĈÂ=Ĉ

FMZ9 Una dimostrazione per F è conseguenza di S è una sequenza DIM=P 1,P 2,…,P n dove P n =F P i  S oppure P i è ottenibile da P i1,…,P im (con i1<i,.., im<i) applicando una regola di inferenza Processo di dimostrazione SF

FMZ10 Regole di inferenza: Modus Ponens (MP) Se piove, la strada è bagnata. Piove. Allora la strada è bagnata. P  B, P B MP

FMZ11 Regole di inferenza: AND- Introduzione(AI) e AND- Eliminazione(AE) A 1,…,A n A 1  …  A n AiAi AND-Introduzione AND-Eliminazione AE AI

FMZ12 Calcolo Proposizionale Sistema (d’assiomi) SINTASSI Ingredienti: Un insieme di simboli L –Letterali: A 1,…A n –Connettivi Logici: , , , ,(,) Un sottoinsieme FBF di L* detto delle formule ben formate

FMZ13 Calcolo Proposizionale Sistema (d’assiomi) SINTASSI Ingredienti: Un insieme ASSIOMI  FBF Un insieme R di regole di inferenza Abbiamo a disposizione: Meccanismo della dimostrazione SF

FMZ14 Connettivi Logici SIMBOLO NOT  ~ AND  OR  IMPLIES  IFF 

FMZ15 FBF formule ben formate I letterali sono formule ben formate Se A  FBF e B  FBF, allora  A  FBF A  B  FBF A  B  FBF A  B  FBF

FMZ16 Assiomi (Conoscenze pregresse) A1: A  (B  A) A2: (A  (B  C))  ((A  B)  (A  C)) A3: (  B  A)  ((  B  A)  B) A4:  (A  A) A5: A  A

FMZ17 Esempio Se l’unicorno è mitico, allora è immortale, ma se non è mitico allora è mortale. Se è mortale o immortale, allora è cornuto. L’unicorno è magico se è cornuto. Domande: a)L’unicorno è mitico? b)L’unicorno è magico? c)L’unicorno è cornuto?

FMZ18 Procedimento 1.Esprimere il problema in forma di logica dei predicati 2.Individuare i teoremi da dimostrare 3.Dimostrare i teoremi

FMZ19 Esempio Se l’(unicorno è mitico), allora l’(unicorno è immortale), ma se non (è mitico) allora (è mortale). Se l’(unicorno è mortale) o l’(unicorno è immortale), allora (unicorno è cornuto). L’(unicorno è magico) se l’(unicorno è cornuto). Letterali: UM = unicorno è mitico UI = unicorno è immortale UMag = unicorno è magico UC = unicorno è cornuto

FMZ20 Esempio Se l’(unicorno è mitico) UM, allora l’(unicorno è immortale) UI, ma se non (è mitico) UM allora (è mortale)  UI. Se l’(unicorno è mortale)  UI o l’(unicorno è immortale) UI, allora (unicorno è cornuto) UC. L’(unicorno è magico) UMag se l’(unicorno è cornuto) UC. Traduzione: UM  UI  UM  UI  UI  UI  UC UC  UMag

FMZ21 Esempio a)L’unicorno è mitico? b)L’unicorno è magico? c)L’unicorno è cornuto? Traduzione: S = {UM  UI,  UM  UI,  UI  UI  UC, UC  Umag} a) SUM b) SUMag c) SUC

FMZ22 Esempio P1:  UI  UI  UCda S P2:  UI  UIda A4 P3: UCda P1, P2 e MP SUC

FMZ23 Esempio P1:  UI  UI  UCda S P2:  UI  UIda A4 P3: UCda P1, P2 e MP P4: UC  UMag da S P5: UMag da P3, P4 e MP Esercizio: DIMOSTRARE a) SUMag

FMZ24 Ricapitolando Logica Proposizionale (fin qui vista) –Permette di imbrigliare dei ragionamenti in dei simboli –Permette di dedurre simboli da altri simboli –Che manca? Il concetto di Vero e di Falso

FMZ25 Logica Proposizionale SEMANTICA Funzione di interpretazione I I: FBF  {V,F} che è composizionale ovvero: date A e B in FBF I(  A)=  I(A) I(A  B)= I(A)  I(B) I(A  B)= I(A)  I(B) I(A  B)= I(A)  I(B)

FMZ26 Logica Proposizionale SEMANTICA Tavole delle verità dei connettivi logici

FMZ27 Scopo del calcolo Assumere Vere le FBF in S e verificare che F sia Vera Logica Proposizionale SEMANTICA SF

FMZ28 Esempio  A  A A AA VFV FVV

FMZ29 Esempio  A  (B  A) AB BABA VVVV VFVV FVFV FFVV Esercizio: Provare a costruire la tabella di verità degli altri assiomi.

FMZ30 Tautologie e modelli Una FBF sempre vera indipendentemente dal valore dei letterali viene detta tautologia Un modello di un insieme F di FBF è una particolare interpretazione I che rende vere tutte le formule in F

FMZ31 Osservazione SF SF Semantica Sintassi Chi garantisce?