Spettroscopia di Assorbimento Molecolare

Slides:



Advertisements
Presentazioni simili
Le onde elettromagnetiche
Advertisements

Spettroscopia infrarossa IR
Onde elettromagnetiche
Università di Ferrara - Dipartimento di Chimica
Spettrofotometria Dott. Michele Orlandi DIPARTIMENTO DI CHIMICA
di un campione e anche di effettuare analisi di tipo quantitativo.
Spettroscopia Una parte molto importante della Chimica Analitica Strumentale è basata sullo studio dello scambio di energia (interazioni) tra la radiazione.
Spettroscopia Una parte molto importante della Chimica Analitica Strumentale è basata sullo studio dello scambio di energia nelle interazioni tra la radiazione.
Lo spettro della luce LASER
ANALISI SPETTROSCOPICA
Cenni di spettroscopia UV/VIS. La spettroscopia UV/VIS Tecnica spettroscopica basata sulle interazioni tra gli elettroni, solitamente di valenza, e la.
Tecniche di Caratterizzazione
L’INTERAZIONE LUCE-MATERIA
Metodi spettroscopici: si basano sulla misura delle variazioni di energia che si verificano a carico di nuclei, atomi o molecole in seguito ad interazione.
TEORIA MODELLO CLASSICO MODELLO SEMICLASSICO MODELLO QUANTISTICO
SPETTROSCOPIA.
SPETTROSCOPIA VIBRAZIONALE
SPETTROSCOPIA FOTOELETTRONICA
APPLICAZIONI.
SPETTROSCOPIA VIBRAZIONALE MOLECOLE BIATOMICHE
SPETTROSCOPIA ELETTRONICA
LA POLARIZZAZIONE.
A.CarneraScienza delle Superfici (Mod. B) Spettroscopie.
Esercizi.
Introduzione ai metodi spettroscopici per i Beni Culturali
Spettrofotometri a doppio raggio
II lezione.
Interazioni con la Materia
Fluorescenza e fosforescenza Lezione di R.G. Agostino
IL LEGAME METALLICO B, Si, Ge, As, Sb, Te, Po, At
LA NATURA DELLA LUCE E IL MODELLO ATOMICO DI BOHR
MISURA DI h CON LED Progetto Lauree Scientifiche 2009
Spettrofotometri Componenti principali: Sorgente di luce
Le radiazioni elettromagnetiche
BIOTECNOLOGIE utilizzo di organismi viventi o loro derivati allo scopo di produrre quantità commerciali di prodotti utili migliorare le caratteristiche.
Università degli studi di Padova Dipartimento di ingegneria elettrica
SORGENTE In generale una sorgente deve produrre luce in un ampio ambito di  ed avere una intensità di emissione il più possibile uniforme Sorgente “ideale”
METODI COLORIMETRICI E SPETTROFOTOMETRICI
STRUMENTAZIONE PER SPETTROFOTOMETRIA
SPETTROFOTOMETRIA Proprietà fisiche della radiazione e.m
Le interazioni delle radiazioni elettromagnetiche con la materia offrono lopportunità di indagare in vario modo sulla natura e sulle caratteristiche di.
"La Spettroscopia Raman"
SPETTROSCOPIA UV – VISIBILE
Spettrometria di luminescenza molecolare
SPETTROFOTOMETRO UV – VISIBILE
ASSORBIMENTO ATOMICO CLASSE 3 API.
L’INTERAZIONE LUCE-MATERIA
Spettroscopia atomica e molecolare
SPETTROSCOPIA IR Laboratorio di Chimica Organica 2 - Prof. Cristina Cimarelli L27 - CHIMICA - AA
Cap. VI Proprietà ottiche dei materiali e sorgenti luminose
Il comportamento di una sostanza può essere interpretato in maniera completa solo se si conosce anche la natura dei legami che tengono uniti gli atomi.
UV-VIS Dott. Alfonso Zoleo
Spettrofotometria Il monocromatore
La Spettroscopia UV-visibile
Il Microscopio elettronico a scansione
LA VELOCITÀ DI REAZIONE
LASER ERIK LA COGNATA.
Il comportamento di una sostanza può essere interpretato in maniera completa solo se si conosce anche la natura dei legami che tengono uniti gli atomi.
In fisica il termine spettrofotometria designa lo studio degli spettri elettromagnetici e permette la determinazione qualitativa e quantitativa di una.
Lo SPETTRO della LUCE. Double beam spectrophotometer.
METODI SPETTROSCOPICI D’ANALISI
METODI OTTICI DI ANALISI
Dal composto organico alla sua formula molecolare  Individuazione dei gruppi funzionali  Determinazione della formula bruta e preliminari informazioni.
Studentessa: Federica Esposito matr 574/424 Anno accademico: 2008/09
TECNICHE SPETTROSCOPICHE Le tecniche spettroscopiche sono tutte quelle tecniche basate sull’interazione tra la materia e le radiazioni elettromagnetiche.
SPETTROSCOPIA UV-VISIBILE
Spettrofotometria. La spettrofotometria La spettrofotometria si occupa dello studio quali-quantitativo delle radiazioni assorbite (o emesse) dalla materia.
INTERFEROMETRO (Michelson)
Spettroscopia UV-VIS Nella spettroscopia UV-VIS il campione è irraggiato con luce avente  nell’UV, nel visibile . Le molecole che compongono il campione.
ANALISI SPETTROSCOPICA
Transcript della presentazione:

Spettroscopia di Assorbimento Molecolare Spettrofotometria UV-vis Spettroscopia IR

Spettroscopia UV-vis Questa spettroscopia, come già detto, si occupa delle transizioni fra diversi stati elettronici della molecola. Queste transizioni sono generalmente accompagnate a transizioni sia vibrazionali che rotazionali, per cui gli assorbimenti sono costituiti da moltissime righe molto vicine tra loro, tanto da apparire un continuo, cioè una banda. La “struttura fine” dovuta alle transizioni rotazionali e vibrazionali non è generalmente rilevabile, se non nel caso di spettri elettronici di gas rarefatti eseguiti con spettrografi ad alta risoluzione.

Sostanze Organiche Nei composti ORGANICI l’assorbimento UV-vis avviene per transizioni elettroniche tra orbitali molecolari popolati e orbitali vuoti. s s * p n p * legame anti-legame non-legame Transizioni s  s * Non si osservano nella regione UV-vis: sono necessarie radiazioni con l > 150 nm Queste transizioni corrispondono alle energie di rottura dei legami C-C, C-H, C-O, C-X... Transizioni n  s * Per composti che hanno doppietti disponibili; ad es. composti con O, N, S e alogeni. Gli assorbimenti sono tipicamente nella regione tra 150-250 nm e non sono molto intensi. Transizioni n  p * e p  p * Per composti insaturi; ad es. composti con doppi e tripli legami e aromatici. Questi assorbimenti cadono nella regione tra 200-700 nm e sono molto intensi. In presenza di doppi legami coniugati, si verifica una delocalizzazione elettronica con conseguente diminuzione energetica tra un livello e l'altro: per queste transizioni occorreranno radiazioni a l minore, quali ad esempio quelle nel campo visibile.

Esempi

spettro del Benzene in fase gassosa Esempio: spettro del Benzene in fase gassosa

Effetto del solvente sullo spettro

Sostanze Inorganiche Spettri di assorbimento simili a quelli per le sostanze organiche. I nitrati danno assorbimenti intensi; si possono inoltre ottenere spettri di assorbimento UV-vis per specie che hanno orbitali d incompleti. Gli assorbimenti più intensi sono comunque quelli dei complessi dei metalli di transizione; in tal caso infatti si ha l’interazione tra gli orbitali dei leganti e gli orbitali d del metallo. Complessi per trasferimento di carica Complesso tra una specie elettron-donatore ed una elettron-accettore. Si ha un parziale trasferimento di elettroni dal donatore all’accettore (simile ad una struttura di risonanza) in uno stato eccitato. La transizione tra questo stato eccitato e lo stato fondamentale cade nella regione UV-vis. Queste specie mostrano bande molto intense, tanto che molti metodi di analisi spettrofotometrica si basano sulla formazione di tali complessi. Es. Fe2+ /ortofenantrolina

Spettroscopia IR Le radiazioni IR hanno un’energia insufficiente per promuovere transizioni elettroniche. L’assorbimento IR quindi è limitato ai livelli rotazionali e vibrazionali delle molecole. N.B. L’energia richiesta per causare una transizione rotazionale è piccola e cade nel lontano IR (< 100 cm-1): per i gas l’assorbimento in questa regione dà origine a spettri a righe ben definiti, mentre nei liquidi e nei solidi, le collisioni intermolecolari e le interazioni causano l’allargamento fino a un continuo. Pertanto nella spettroscopia IR si prendono in esame soltanto le transizioni vibrazionali.

Tipi di vibrazioni molecolari Dipendono da: Numero di atomi Tipo di atomi Tipo di legame tra gli atomi Le vibrazioni possono essere suddivise in due categorie fondamentali: STIRAMENTO (stretching): variazione continua della distanza interatomica lungo l’asse di legame DEFORMAZIONE (bending): variazione dell’angolo tra 2 legami

Spettri IR A causa dell’elevato numero di possibili moti vibrazionali delle molecole gli spettri IR possono essere molto complessi, soprattutto per grosse molecole. La spettroscopia IR viene usata prevalentemente per l’identificazione di composti organici, mediante riconoscimento di gruppi funzionali che assorbono a frequenze caratteristiche (analisi qualitativa).

Spettroscopia UV-vis e IR in Chimica Analitica Gli spettri sono caratteristici per ogni sostanza (ione o molecola)  ANALISI QUALITATIVA L’intensità della radiazione assorbita è proporzionale alla concentrazione della sostanza in esame  ANALISI QUANTITATIVA

Analisi Qualitativa Per effettuare analisi qualitative si fa uso di raggi policromatici a spettro continuo, separati tramite monocromatori nelle varie componenti (radiazioni monocromatiche). Le singole radiazioni monocromatiche si fanno passare, una alla volta, attraverso la sostanza in esame, la quale assorbirà in modo diverso le diverse radiazioni. Riportando i valori registrati in un grafico lunghezza d'onda-assorbimento, si ottiene lo spettro di assorbimento della sostanza esaminata. Spettri UV-vis di K2Cr2O7 e KMnO4 Spettro IR dell’ottano Poiché ogni sostanza ha un particolare spettro di assorbimento, l'esame di tali spettri permette di identificare una sostanza (per confronto diretto con campioni noti o tramite banche dati di spettri) o di controllarne il grado di purezza.

Soluzione di concentrazione c Analisi Quantitativa Quando un raggio luminoso di potenza radiante P0 viene assorbito da un campione, la sua potenza si riduce e solo una parte (P) viene trasmessa. Si definisce TRASMITTANZA (T) la frazione di luce incidente che viene trasmessa dal campione, cioè T = P/P0 b P0 P Soluzione di concentrazione c Generalmente anziché usare la trasmittanza nelle analisi chimiche è comodo far riferimento all’ASSORBANZA (A) definita come: A = - log T. L’assorbanza è importante perché è direttamente proporzionale alla concentrazione della specie presente nel campione responsabile dell’assorbimento della luce. L’equazione che correla l’assorbanza con la concentrazione è la legge di LAMBERT-BEER: A =  b c c = concentrazione molare (M, mol/L), b = cammino ottico (generalmente misurato in cm), e = assorbività molare o coefficiente di estinzione (M-1 cm-1). È una costante. Dipende dalla natura della sostanza e dalla l. L’assorbanza è pertanto una grandezza adimensionale La legge di Lambert-Beer è valida per radiazioni monocromatiche e soluzioni diluite

Applicabilità della legge di Lambert-Beer e deviazioni È valida solo per soluzioni diluite (< 10-2 M) All'aumentare della concentrazione aumenta il numero di particelle in soluzione ed aumenta anche il numero di urti fra queste; le forze interioniche e/o intermolecolari aumentano e possono formarsi molecole o aggregati di particelle più complesse, diverse per struttura da quelle in esame, per cui si potrà avere uno spostamento del massimo di assorbimento. e dipende dall’indice di rifrazione del mezzo che, per concentrazioni elevate, dipende a sua volta dalla concentrazione. Limiti strumentali Radiazione incidente non perfettamente monocromatica Radiazioni parassite che raggiungono il rivelatore Ps = radiazione parassita non assorbita