L’INTERAZIONE LUCE-MATERIA

Slides:



Advertisements
Presentazioni simili
LEZIONI DI OTTICA per le scuole medie Dott
Advertisements

Le onde elettromagnetiche
Spettroscopia infrarossa IR
E LA LUCE FU.
La luce e il colore.
1. La Fisica Classica 2. Lelettrone e lesperimento di Millikan 3. Gli spettri e il calore 4. La fisica quantistica e leffetto fotoelettrico 5. I modelli.
Breve storia dei modelli atomici
I COLORI Michele Kodrič.
Onde elettromagnetiche
Spettroscopia Una parte molto importante della Chimica Analitica Strumentale è basata sullo studio dello scambio di energia (interazioni) tra la radiazione.
La Luce.
Colore dei corpi opachi riflettenti dispersione della luce paradosso di Olbers In funzione della frequenza della luce incidente e della natura dei pigmenti.
Spettroscopia Una parte molto importante della Chimica Analitica Strumentale è basata sullo studio dello scambio di energia nelle interazioni tra la radiazione.
Lo spettro della luce LASER
ANALISI SPETTROSCOPICA
L’INTERAZIONE LUCE-MATERIA
Lezione chimica 7 Onde elettromagnetiche Luce
Teoria del colore Andrea Torsello
Tecniche di elaborazione delle immagine
La luce solare.
L’atmosfera La troposfera La stratosfera La termosfera L’esosfera
COMPRESENZA LINGUAGGI NON VERBALI - PSICOLOGIA
LAVORO SVOLTO DA STEFANIA ELEONORA
LAVORO SVOLTO DA: MASSIMILIANO & ANDREA.
Presentazione a cura di :
LA POLARIZZAZIONE.
Introduzione ai metodi spettroscopici per i Beni Culturali
Scuola di specializzazione in Beni Culturali
II lezione.
LE DISTANZE ASTRONOMICHE
Lezione 2 Il modello atomico-planetario di Bohr
LA NATURA DELLA LUCE E IL MODELLO ATOMICO DI BOHR
A cura di Matteo Cocetti & Francesco Benedetti
Onde.
MISURA DI h CON LED Progetto Lauree Scientifiche 2009
+ ONDE ELETTROMAGNETICHE UN CAMPO ELETTRICO E’ GENERATO DA
Le radiazioni elettromagnetiche
La fisica quantistica - Il corpo nero
L’essenziale è invisibile agli occhi “Antoine de Saint-Exupérie”
DALL'INTUZIONE ALL'IMMAGINE
Macchine per osservare, riprodurre e simulare il colore Liceo Scientifico Tecnologico “L. e A. Franchetti”
Sulla strada della Fisica Moderna Le prime ricerche sistematiche sugli spettri furone effettuate da Bunsen e Kirchhoff tra il 1855 e il 1863.
METODI COLORIMETRICI E SPETTROFOTOMETRICI
SPETTROFOTOMETRIA Proprietà fisiche della radiazione e.m
Le interazioni delle radiazioni elettromagnetiche con la materia offrono lopportunità di indagare in vario modo sulla natura e sulle caratteristiche di.
SPETTROSCOPIA Materiale tratto da: Progetto Lauree Scientifiche 2009
SPETTROSCOPIA UV – VISIBILE
IL SOLE LA NOSTRA STELLA.
Modello Atomico di Thomson
Luce colorata.
IL COLORE.
Spettroscopia di Assorbimento Molecolare
natura e visione dei colori
L’analisi della luce degli astri: fotometria e spettrometria
Scuola Interuniversitaria Campana di Specializzazione all’Insegnamento S.I.C.S.I. III Ciclo 2° Anno A.A Ambito tecnologico- Classe A042 Informatica.
ELETTROMAGNETICHE E LA LUCE
H. h Radiazione elettromagnetica Le onde elettromagnetiche sono vibrazioni del campo elettrico e del campo magnetico; sono costituite da.
Lo spettro di frequenze della radiazione elettromagnetica dallo spazio RADIAZIONE = Onda elettromagnetica ma anche = Particella E=h Natura della radiazione.
IL SUONO CLASSI TERZE.
Test di Fisica Soluzioni.
Spettro elettromagnetico L. Pietrocola. Spettro elettromagnetico Lo spettro elettromagnetico è proprio un nome che gli scienziati danno ad un insieme.
Modulo di Elementi di Trasmissione del Calore Irraggiamento Titolare del corso Prof. Giorgio Buonanno Anno Accademico Università degli studi.
I corpi celesti La luce del Sole è in realtà composta di una mescolanza di luce di svariati colori, che sono anche i colori dell'arcobaleno. L’insieme.
LE STELLE E LA SFERA CELESTE Il cielo veniva raffigurato dagli antichi come una grande cupola sferica, la “volta celeste”. Gli oggetti che spiccano nel.
SPETTROSCOPIA UV-VISIBILE
Spettrofotometria. La spettrofotometria La spettrofotometria si occupa dello studio quali-quantitativo delle radiazioni assorbite (o emesse) dalla materia.
Transcript della presentazione:

L’INTERAZIONE LUCE-MATERIA

LA LUCE La luce visibile è formata dalle onde elettromagnetiche, vibrazioni di campi magnetici ed elettrici che si propagano nello spazio. Contrariamente alle analoghe onde oceaniche che hanno un moto molto lento, le onde elettromagnetiche viaggiano alla velocità della luce: 300.000.000 metri al secondo, 1.080.000.000 chilometri l'ora! Ogni onda elettromagnetica ha una frequenza (n) definita ed una lunghezza d'onda (l) associata a questa frequenza; queste due grandezze sono legate da una relazione matematica l = c/n Velocità della luce ~ 3×108 m/s (una costante)

Tutte le onde elettromagnetiche sono classificate in base alle loro frequenze caratteristiche all'interno di quello che è noto come: SPETTRO ELETTROMAGNETICO Proprio come la luce rossa ha una sua frequenza distinta, lo stesso vale per gli altri colori. Mentre possiamo percepire queste onde elettromagnetiche nei rispettivi colori, non possiamo vedere il resto dello spettro elettromagnetico. Buona parte dello spettro elettromagnetico è infatti invisibile ed ha frequenze che spaziano in tutta la sua larghezza.

Un prisma è un oggetto in grado di disperdere la luce bianca nelle sue componenti monocromatiche Con il “cerchio di Newton” è possibile “miscelare” le componenti monocromatiche ed ottenere la loro somma, il bianco rotazione

Gli spettri di assorbimento e di emissione atomici sono “a righe”: in un atomo ci possono essere più salti energetici, ma ad ogni salto è associata una precisa radiazione, con una precisa frequenza (e lunghezza d’onda) Riportiamo qui un esempio di spettro continuo nel visibile (luce) spettro di emissione discreto dell'idrogeno atomico eccitato da scarica elettrica spettro solare di assorbimento discreto con varie righe da vari atomi

Gli spettri di assorbimento costituiscono uno strumento decisivo per comprendere la composizione delle stelle. La radiazione ad alta energia e a spettro continuo prodotta dal nucleo delle stelle in cui avviene la fusione nucleare passa attraverso l'atmosfera della stella costituita da gas rarefatto freddo (rispetto al materiale sottostante). Gli atomi dell'atmosfera stellare vengono così eccitati e producono spettri di assorbimento. Siccome ogni specie atomica (e molecolare) ha una propria unica sequenza di righe di emissione (che ne sostituiscono una sorta di "impronta digitale"), osservando uno spettro di assorbimento siamo in grado di "decifrare" la composizione dell'atmosfera stellare.  Da ora in avanti considereremo uno “spettro” di assorbimento o di emissione come un grafico che riporta l’intensità della radiazione (assorbita o emessa) in funzione della sua frequenza (o della sua lunghezza d’onda)

IL COLORE DEGLI OGGETTI Le differenti lunghezze d'onda vengono interpretate dal cervello come colori, che vanno dal rosso delle lunghezze d'onda più ampie (minore frequenza), al violetto delle lunghezze d'onda più brevi (maggiore frequenza). Le frequenze comprese tra questi due estremi vengono percepite come arancio, giallo, verde, blu e indaco. Le frequenze immediatamente al di fuori di questo spettro percettibile dall'occhio umano vengono chiamate ultravioletto (UV), per le alte frequenze, e infrarosso (IR) per le basse. Anche se gli esseri umani non possono vedere l'infrarosso, esso viene percepito dai recettori della pelle come calore. Alcuni animali, come le api, riescono a vedere gli ultravioletti; altri invece riescono a vedere gli infrarossi. In effetti un oggetto ci appare del colore associato alla mescolanza delle radiazioni che esso non assorbe, e quindi riflette.

A questo punto ci si può chiedere perché una sostanza assorba proprio in corrispondenza di certe lunghezze d’onda piuttosto che di altre. La risposta a questa domanda prevede che si conosca la struttura delle molecole che costituiscono tale sostanza, ed in pratica la natura dei legami da cui sono tenute assieme. Indigotina (blu) Tartrazina (gialla) Infatti se si conosce la struttura di una molecola, applicando la meccanica quantistica, si può risalire al suo diagramma energetico, e conoscere così le distanze di energia che intercorrono tra uno stato ed un altro. A ciascun salto energetico corrisponderà una particolare frequenza della radiazione assorbita, e indirettamente ogni salto energetico che coinvolga la radiazione visibile, determinerà il colore che noi osserveremo per una data sostanza.

Spettro di assorbimento della clorofilla a Un grafico che riporti l’assorbimento di onde elettromagnetiche in funzione della lunghezza d’onda della radiazione incidente, viene detto SPETTRO DI ASSORBIMENTO. Nel caso di un atomo, lo spettro di assorbimento è costituito da righe, mentre per una molecola (sistema più complesso), è costituito da bande Esempio: Spettro di assorbimento della clorofilla a A Lunghezza d’onda (nm) Clorofilla a

COLORE. Percezione sensoriale dovuta a radiazioni elettromagnetiche in grado di stimolare la retina dell'occhio. Tali radiazioni appartengono alla cosiddetta banda del visibile: radiazione luminosa, o luce, è appunto l'insieme delle radiazioni monocromatiche (cioè di una data lunghezza d'onda) in grado di produrre questo stimolo. Ciascuna radiazione monocromatica comporta la visione di un determinato colore; combinazioni di radiazioni diverse fanno vedere colori diversi e tale rappresentazione psichica varia a seconda degli individui e delle situazioni. SPETTRO. L'insieme delle radiazioni monocromatiche presenti in una luce policromatica; anche la striscia luminosa, colorata, che si ottiene raccogliendo su uno schermo le radiazioni in cui è stata scomposta una luce policromatica || Spettro visibile è l'insieme delle radiazioni elettromagnetiche che producono sensazioni luminose. SPETTROSCOPIA. Ramo della fisica che si occupa della produzione e dell'analisi dello spettro delle radiazioni elettromagnetiche e in particolare di quello della luce.