Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A 2014-2015 - Dott. Ing. Fabrizio Paolacci.

Slides:



Advertisements
Presentazioni simili
Corso di Tecnica delle Costruzioni I - Teoria delle Esercitazioni
Advertisements

Il termine nodo si riferisce a zone in cui concorrono più elementi strutturali. Fino a non molti anni fa, si pensava che i nodi si trovassero comunque.
Metodi di verifica agli stati limite
Dinamica dei sistemi di punti
INTRODUZIONE AL CORSO DI TECNICA DELLE COSTRUZIONI
LEZIONE N° 9 – IL CEMENTO ARMATO PRECOMPRESSO
Determinazione della curvatura nello stato fessurato
LEZIONE N° 3 – STATO LIMITE ULTIMO DI INSTABILITA’
Stato limite ultimo di sezioni in c.a. soggette a pressoflessione
Corso di Tecnica delle Costruzioni – I° Modulo – A/A
Corso di Tecnica delle Costruzioni – I° Modulo – A/A
Il punzonamento Pier Paolo Rossi.
IL SOLAIO – IL PROGETTO DELLE ARMATURE
Corso di Tecnica delle Costruzioni I - Teoria delle Esercitazioni
Corso di Tecnica delle Costruzioni I - Teoria delle Esercitazioni
Limitazioni geometriche e Armature
SLE DI DEFORMAZIONE IN TRAVI DI CEMENTO ARMATO
IL SOLAIO – MODELLAZIONE
Corso di Laurea in Ingegneria Civile
Corso di Laurea in Ingegneria Civile
PROGETTO DI UNA STRUTTURA INTELAIATA CON PARETI IN CD”B”
Corso di Tecnica delle Costruzioni II - Teoria delle Esercitazioni
Università degli studi di salerno
STRUTTURE BIDIMENSIONALI PIANE
IL SOLAIO – MODELLAZIONE
Lezione n° 12 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci.
Lezione n°24 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci.
Lezione n° 9 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci.
Lezione n° Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci.
Lezione n° 12 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci.
STRUTTURE MISTE ACCIAIO-CLS
Normativa Sismica dei Ponti
Lezione n° 14 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci.
Lezione n° 11 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci.
Presentazoione temi progettuali
Lezione n°25 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci.
Calcolo dei pilastri in Cemento Armato allo SLU
IL SOLAIO – IL PROGETTO DELLE ARMATURE
Franco Angotti, Maurizio Orlando Dipartimento di Ingegneria Civile e Ambientale, Università degli Studi di Firenze Progetto con modelli tirante-puntone.
IL PROGETTO DELLE TRAVI IN C.A. SOGETTE A TORSIONE
SLE DI FESSURAZIONE IN TRAVI DI CEMENTO ARMATO
Progetto di Strutture INTRODUZIONE AL CORSO Dipartimento di Ingegneria
PROGETTO DELLE FONDAZIONI DI UN TELAIO IN CEMENTO ARMATO
Normativa Italiana sui ponti
Lezione n° 9 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci.
INTRODUZIONE AL CORSO.
FACOLTA’ DI INGEGNERIA PROGETTO DI STRUTTURE A/A Docente: Ing. Malena PROGETTO DELLE ARMATURE DI UN TELAIO IN CEMENTO ARMATO.
AICAP - ASSOCIAZIONE ITALIANA CALCESTRUZZO ARMATO E PRECOMPRESSO
Perdite istantanee e Cadute lente in travi di CAP
Università degli Studi Roma Tre – Facoltà di Ingegneria – Corso di Cemento Armato precompresso A/A Richiami di geometria delle Aree Università.
IL CEMENTO ARMATO PRECOMPRESSO
Statica delle sezioni in cap
Metodi di verifica agli stati limite
Progetto di travi in c.a.p isostatiche
Corso di Tecnica delle Costruzioni I - Teoria delle Esercitazioni
Corso di Tecnica delle Costruzioni I - Teoria delle Esercitazioni
Università degli Studi di Roma Tre - Facoltà di Ingegneria Laurea magistrale in Ingegneria Civile in Protezione… Corso di Cemento Armato Precompresso –
Verifica allo SLU di sezioni inflesse in cap
Corso di Tecnica delle Costruzioni I - Teoria delle Esercitazioni
Università degli Studi di Roma Tre - Facoltà di Ingegneria
Il calcolo in fase elastica delle sezioni composte c.a.- c.a.p.
Progetto di travi in c.a.p isostatiche
Università degli Studi di Roma Tre - Facoltà di Ingegneria Laurea magistrale in Ingegneria Civile in Protezione… Corso di Cemento Armato Precompresso –
Progetto di travi in c.a.p isostatiche
Teoria delle Piastre e dei Gusci
Lezione n° 14 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci.
Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci Lezione.
Lezione n° 8a Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci.
Lezione n° 11 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci.
Verifica delle piastre in c.a.
Transcript della presentazione:

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci Momenti resistenti x y Ax - Ax + Ay - Ay +

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci N.B Il momento torcente non da contributo al momento resistente

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci Giacitura Critica

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci Le precedenti si possono riscrivere più semplicemente: Per momenti positivi (+) Per momenti negativi (-) NB: Per il calcolo dell’armatura superiore e inferiore è sufficiente imporre che i momenti resistenti siano pari alle espressioni indicate.

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci ESEMPIO

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci ESEMPIO: GEOMETRIA E MATERIALI

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci ESEMPIO: CARICHI

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci ESEMPIO: SOLLECITAZIONI Modello a Trave Modello a Piastra (Analitico) Modello a Piastra (Numerico) Riduzione del 21% del Mmax

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci ESEMPIO: SPOSTAMENTI Modello a Trave Modello a Piastra (Numerico) Modello a Piastra (Analitico) Riduzione del 26% di vmax

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci ESEMPIO: fessurazione E’ importante osservare come il precedente calcolo degli spostamenti, effettuato nell’ipotesi che la struttura sia in stadio I (sezione interamente reagente), sia perfettamente lecito nel caso in esame. In Figura sono mostrate le zone del campo principale soggette a fessurazione, ovvero le zone in cui il massimo momento principale, sia esso negativo o positivo, eccede il momento di prima fessurazione: si pu`o notare come tale fenomeno interessi solo zone limitate del campo principale.

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci ESEMPIO: DIMENSIONAMENTO E VERIFICA Punti di maggiore sollecitazione

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci ESEMPIO: DIMENSIONAMENTO E VERIFICA Momenti resistenti di progetto Punto A Momento torcente nullo perché siamo sull’asse di simmetria Lembo Inferiore (M+) Lembo superiore (M-)

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci ESEMPIO: DIMENSIONAMENTO E VERIFICA Armature di progetto Punto A Momento torcente nullo perché siamo sull’asse di simmetria Lembo sup (M+) Lembo inf (M-) A s = M xu /(0.9 d fyd) = 4.22 cm 2 /m A s = M xu /(0.9 d fyd) = 2.01 cm 2 /m

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci ESEMPIO: DIMENSIONAMENTO E VERIFICA Momenti resistenti di progetto Punto B Momento torcente nullo perché siamo sull’asse di simmetria Lembo Inferiore (M+) Lembo Inferiore (M-)

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci ESEMPIO: DIMENSIONAMENTO E VERIFICA Armature di progetto Punto B Momento torcente nullo perché siamo sull’asse di simmetria Lembo sup (M-) Lembo inf (M+) A s = M xu /(0.9 d fyd) = 8.19 cm 2 /m A s = M xu /(0.9 d fyd) = 1.63 cm 2 /m

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci ESEMPIO: DIMENSIONAMENTO E VERIFICA Momenti resistenti di progetto Momento torcente ora non è nullo Lembo Inferiore (M+) Lembo Inferiore (M-)

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci ESEMPIO: DIMENSIONAMENTO E VERIFICA Armature di progetto Momento torcente ora non è nullo Lembo Inferiore (M+) Lembo Inferiore (M-) A s = m xu /(0.9 d fyd) = 2.85 cm 2 /m A s = m xu /(0.9 d fyd) = 1.69 cm 2 /m

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci ESEMPIO: DIMENSIONAMENTO E VERIFICA Momenti massimi

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci ESEMPIO: DIMENSIONAMENTO E VERIFICA Momenti massimi

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci ESEMPIO: DIMENSIONAMENTO E VERIFICA Momenti Massimi

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci DISPOSIZIONE DELLE ARMATURE: PIASTRA QUDRATA APPOGGIATA CON CARICO UNIFORME DIREZIONI PRINCIPALI DEI MOMENTI DIREZIONI PRINCIPALI DELLE TRAZIONI LESIONI ALL’INTRADOSSO intradosso

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci DISPOSIZIONE DELLE ARMATURE: PIASTRA QUADRATA APPOGGIATA CON CARICO UNIFORME DIREZIONI PRINCIPALI DEI MOMENTI DIREZIONI PRINCIPALI DELLE TRAZIONI LESIONI ALL’ESTRADOSSO estradosso

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci DISPOSIZIONE DELLE ARMATURE: PIASTRA QUADRATA APPOGGIATA CON CARICO UNIFORME DISPOSIZIONE ARMATURA

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci DISPOSIZIONE DELLE ARMATURE: PIASTRA RETTANGOLARE APPOGGIATA DISPOSIZIONE ARMATURA

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci DISPOSIZIONE DELLE ARMATURE: PIASTRA RETTANGOLARE INCASTRATA DISPOSIZIONE ARMATURA

Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci DISPOSIZIONE DELLE ARMATURE: PIASTRA RETTANGOLARE INCASTRATA DISPOSIZIONE ARMATURA