Docente: Dr. Stefania Bortoluzzi Dipartimento di Biologia Universita' di Padova viale G. Colombo 3, 35131, Padova Tel. 0039 049 8276214

Slides:



Advertisements
Presentazioni simili
Allineamento Pairwise e Multiplo di Bio-Sequenze.
Advertisements

UNIVERSITA’ DI MILANO-BICOCCA LAUREA MAGISTRALE IN BIOINFORMATICA
Sequenza-struttura-funzione
gruppi di amminoacidi in base alle catene laterali
RICERCA DI SIMILARITA’ IN BANCHE DATI
Allineamento di sequenze
Regressione logistica
I programmi di ricerca in banche dati possono essere oppure essere utilizzabili via web residenti in un calcolatore di cui siamo proprietari o utenti.
Biologia computazionale
Access: Query semplici
Bioinformatica Corso di Laurea Specialistica in Biologia Cellulare e Molecolare Ricerca pattern e di motivi funzionali 8/5/2008 Stefano Forte.
Metodi basati sulle similitudini per dedurre la funzione di un gene
Biologia computazionale A.A semestre II U NIVERSITÀ DEGLI STUDI DI MILANO Docente: Giorgio Valentini Istruttore: Matteo Re p4p4 Programmazione.
Analisi delle corrispondenze
1) Algoritmi di allineamento 2) Algoritmi di ricerca in database
Allineamento Metodo bioinformatico che date due o più sequenze ne mette in evidenza similarità/diversità, supponendo che le sequenze analizzate abbiano.
ALLINEAMENTI GLOBALI E LOCALI
FASTA: Lipman & Pearson (1985) BLAST: Altshul (1990)
Software per la Bioinformatica
BANCHE DATI DI SEQUENZE GENOMICHE GenBank deriva dalla collaborazione di diversi database di sequenze tra cui EMBL e DDBJ.
WORKING WITH BIOSEQUENCES Alignments and similarity search
SIMILARITA’ ? OMOLOGIA
Informatica e Bioinformatica – A. A
Docente: Dr. Stefania Bortoluzzi Dipartimento di Biologia
Ricerca di similarità di sequenza (FASTA e BLAST)
Tipi di allineamenti.
I programmi di ricerca in banche dati possono essere
Alcuni esempi di domande di esame
BIOINFO3 - Lezione 361 RICERCA DI SIMILARITA TRA SEQUENZE Un altro problema comunissimo in bioinformatica è quello della ricerca di similarità tra sequenze.
BIOINFO3 - Lezione PARSING RISULTATI DI BLAST Nella lezione di ieri abbiamo visto come automatizzare lesecuzione di BLAST. Oggi proviamo.
Dip. Scienze Biomolecolari e Biotecnologie
A.A CORSO BIOINFORMATICA 2 LM in BIOLOGIA EVOLUZIONISTICA Scuola di Scienze, Università di Padova Docenti: Dr. Giorgio Valle Dr. Stefania.
A.A CORSO INTEGRATO DI INFORMATICA E BIOINFORMATICA per il CLT in BIOLOGIA MOLECOLARE Scuola di Scienze, Università di Padova Docenti: Dr.
GLI ALGORITMI VISIBILE SUL BLOG INFORMATICA ANNO SCOLASTICO 2013 / 2014 GABRIELE SCARICA 2°T.
Esempio di utilizzo del programma BLAST disponibile all’NCBI
Corso di laurea specialistica magistrale Biotecnologia aula 6a ore corso di genomica a.a. 2009/10 lezione martedì 15 Dicembre 2009 lezione.
A.A CORSO BIOINFORMATICA 2 LM in BIOLOGIA EVOLUZIONISTICA Scuola di Scienze, Università di Padova Docenti: Dr. Giorgio Valle Dr. Stefania.
Purtroppo non esiste un modo univoco per indicare un gene
A.A CORSO BIOINFORMATICA 2 LM in BIOLOGIA EVOLUZIONISTICA Scuola di Scienze, Università di Padova Docenti: Dr. Giorgio Valle Dr. Stefania.
A.A CORSO INTEGRATO DI INFORMATICA E BIOINFORMATICA per il CLT in BIOLOGIA MOLECOLARE Scuola di Scienze, Università di Padova Docenti: Roberto.
Docente: Dr. Stefania Bortoluzzi Dipartimento di Biologia Universita' di Padova viale G. Colombo 3, 35131, Padova Tel
Docente: Dr. Stefania Bortoluzzi Dipartimento di Biologia Universita' di Padova viale G. Colombo 3, 35131, Padova Tel
Docente: Dr. Stefania Bortoluzzi Dipartimento di Biologia Universita' di Padova viale G. Colombo 3, 35131, Padova Tel
III LEZIONE Allineamento di sequenze
Docente: Dr. Stefania Bortoluzzi Dipartimento di Biologia Universita' di Padova viale G. Colombo 3, 35131, Padova Tel
III LEZIONE Allineamento di sequenze
WORKING WITH BIOSEQUENCES Alignments and similarity search.
Allineamento di sequenze
ALLINEAMENTO DI SEQUENZE
UNIVERSITA’ DEGLI STUDI DI PERUGIA
Corso integrato di Matematica, Informatica e Statistica Informatica di base Linea 1 Daniela Besozzi Dipartimento di Informatica e Comunicazione Università.
Microsoft Access Filtri, query. Filtri Un filtro è una funzione che provoca la visualizzazione dei soli record contenenti dati che rispondono a un certo.
Una volta stabilito che un insieme di proteine sono tra di loro omologhe posso procedere ad un allineamento multiplo. Il programma più usato a questo scopo.
Allineamento di sequenze Perché è importante? Le caratteristiche funzionali delle molecole biologiche dipendono dalle conformazione tridimensionale che.
---ATGTTGAAGTTCAAGTATGGTGTGCGGAAC--- --MLKFKYGVRNPPEA-- Che cosa è la bioinformatica? Approccio multidisciplinare al problema della gestione e della elaborazione.
Sistema di ricerca Entrez Insieme di banche dati contenenti svariati tipi di informazioni biomediche, interrogabile mediante un’unica interfaccia Concetto.
A.A CORSO DI BIOINFORMATICA 2 per il CLM in BIOLOGIA EVOLUZIONISTICA Scuola di Scienze, Università di Padova Docenti: Prof. Giorgio Valle Prof.
L’analisi di regressione e correlazione Prof. Luigi Piemontese.
DIPENDENZA STATISTICA TRA DUE CARATTERI Per una stessa collettività può essere interessante studiare più caratteri presenti contemporaneamente in ogni.
Ipotesi operative TeoriaEsperienza diretta e/o personale Quesito Piano esecutivo Scelta popolazione Scelta strumenti Scelta metodi statistici Discussione.
Concetti di base. Per biodiversità si intende l'insieme di tutte le forme viventi geneticamente diverse e degli ecosistemi ad esse correlati Il termine.
Esempio di allineamento Due regioni simili delle proteine di Drosophila melanogaster Slit e Notch SLIT_DROME FSCQCAPGYTGARCETNIDDCLGEIKCQNNATCIDGVESYKCECQPGFSGEFCDTKIQFC..:.:
La funzione CASUALE. Gli istogrammi.
Allineamenti Multipli Problema Durante l’evoluzione i residui importanti per il mantenimento della struttura e della funzione sono conservati. Come riconoscere.
A.A CORSO INTEGRATO DI INFORMATICA E BIOINFORMATICA per il CLT in BIOLOGIA MOLECOLARE Scuola di Scienze, Università di Padova Docenti: Prof.
A.A CORSO DI BIOINFORMATICA 2 per il CLM in BIOLOGIA EVOLUZIONISTICA Scuola di Scienze, Università di Padova Docente: Prof. Stefania Bortoluzzi.
WORKING WITH BIOSEQUENCES Alignments and similarity search
A.A CORSO INTEGRATO DI INFORMATICA E BIOINFORMATICA per il CLT in BIOLOGIA MOLECOLARE Scuola di Scienze, Università di Padova Docenti: Prof.
WORKING WITH BIOSEQUENCES Alignments and similarity search
WORKING WITH BIOSEQUENCES Alignments and similarity search
Transcript della presentazione:

Docente: Dr. Stefania Bortoluzzi Dipartimento di Biologia Universita' di Padova viale G. Colombo 3, 35131, Padova Tel Corso di Laurea in Biotecnologie Sanitarie Universita' di Padova Corso di Bioinformatica 16 ore

2 III LEZIONE Allineamento di sequenze Allineamento globale e allineamento locale Allineamento di sequenze a coppie o multiplo Ricerca di similarita’ BLAST

RICERCA DI SIMILARITÀ SIMILARITA’  ?  OMOLOGIA OMOLOGIA proprieta’ di caratteri (sequenze) dovuta alla loro derivazione da un carattere ancestrale presente in un antenato comune SIMILARITA’ “grado” di somiglianza tra 2 sequenze La similarita’ osservata tra due sequenze PUO’ indicare che esse siano omologhe, cioe’ evolutivamente correlate La similarita’ e’ una proprieta’ quantitativa, si puo’ misurare L’omologia e’ una proprieta’ qualitativa, non si puo’ misurare. La similarita’ tra sequenze si osserva, l’omologia tra sequenze si puo’ ipotizzare in base alla similarita’ osservata. Percentuale di similarita’ Ricerca di similarita’

4 OMOLOGIA E OMOPLASIA Omologia similarita’ dovuta a derivazione dallo stesso antenato comune Omoplasia similarita’ dovuta a convergenza, stessa pressione selettiva su due linee evolutive puo’ condurre a caratteri simili ORTOLOGIA E PARALOGIA OMOLOGIA ANTENATO COMUNE ORTOLOGIAPARALOGIA PROCESSO DI SPECIAZIONEDUPLICAZIONE GENICA Descrivo le relazioni tra geni di una famiglia intraorganismo (paralogia) o tra diversi organismi (ortologia )

5

6 ALLINEAMENTO DI SEQUENZE Procedura per comparare due o piu’ sequenze, volta a stabilire un insieme di relazioni biunivoche tra coppie di residui delle sequenze considerate che massimizzino la similarita’ tra le sequenze stesse L’allineamento tra due sequenze biologiche è utile per scoprire informazione funzionale, strutturale ed evolutiva

7 Cosa vuol dire allineare due sequenze (proteine o acidi nucleici)? Scrivere due sequenze orizzontalmente in modo da avere il maggior numero di simboli identici o simili in registro verticale anche introducendo intervalli (gaps – inserzioni/delezioni – indels) seq1: TCATG seq2: CATTG TCAT-G.CATTG 4 caratteri uguali 1 inserzione/delezione

8 ALLINEAMENTO DI SEQUENZE A COPPIE AGTTTGAATGTTTTGTGTGAAAGGAGTATACCATGAGATGAGATGACCACCAATCATTTC ||||||||||||||||||| |||||||| ||| | |||||| ||||||||||||||||| AGTTTGAATGTTTTGTGTGTGAGGAGTATTCCAAGGGATGAGTTGACCACCAATCATTTC MULTIPLO KFKHHLKEHLRIHSGEKPFECPNCKKRFSHSGSYSSHMSSKKCISLILVNGRNRALLKTl KYKHHLKEHLRIHSGEKPYECPNCKKRFSHSGSYSSHISSKKCIGLISVNGRMRNNIKT- KFKHHLKEHVRIHSGEKPFGCDNCGKRFSHSGSFSSHMTSKKCISMGLKLNNNRALLKRl KFKHHLKEHIRIHSGEKPFECQQCHKRFSHSGSYSSHMSSKKCV KYKHHLKEHLRIHSGEKPYECPNCKKRFSHSGSYSSHISSKKCISLIPVNGRPRTGLKTs

9 Allineamento GLOBALE o LOCALE GLOBALEconsidera la similarita’ tra due sequenze in tutta la loro lunghezza LOCALE considera solo specifiche REGIONI simili tra alcune parti delle sequenze in analisi Global alignment LTGARDWEDIPLWTDWDIEQESDFKTRAFGTANCHK ||. | | |.|.| || || | || TGIPLWTDWDLEQESDNSCNTDHYTREWGTMNAHKAG Local alignment LTGARDWEDIPLWTDWDIEQESDFKTRAFGTANCHK ||||||||.|||| TGIPLWTDWDLEQESDNSCNTDHYTREWGTMNAHK

10 ALLINEAMENTO GLOBALE ALLINEAMENTO LOCALE

11 AACCGAAGGACTTTAATC AAGGCCTAACCCCTTTGTCC AA..CCGAAGGACTTTAATC AACCGAAGGACT TTAATC || |..||...||||...| | |||.|| ||..|| AAGGCTAAACCCCTTTGTCC A AGGCCTAACCCCTTTGTC Fattibile solo per poche sequenze molto brevi! Possono esistere piu’ allineamenti “equivalenti” seq1 AACCGTTGACTTTGACC Seq2ACCGTAGACTAATTAACC AACCGTTGACT..TTGACC | ||||.|||| ||.||| A.CCGTAGACTAATTAACC Allineamento manuale basato sulla massimizzazione del numero residui identici allineati

12 Un metodo molto semplice ed utile per la comparazione di due sequenze e’ quello della MATRICE DOTPLOT A|X X X T| X X G| X T| X X A T C A C T G T A C| X | | | | | | | A|X X X A T C A - - G T A C| X T| X X A|X X X A T C A G T A

13 MISURE DI IDENTITA’ E DI SIMILARITA’ Il modo piu’ semplice per definire le relazioni di similarita’ tra nucleotidi e’ basato solo su IDENTITA’ e DIVERSITA’. La piu’ semplice matrice di similarita’ per i nucleotidi e’ la “UNITARY SCORING MATRIX”, matrice che assegna punteggio 1 a coppie di residui identici e 0 ai mismatches. A C G T A | C | G | T | Possono esserci altri criteri per dare un peso diverso da zero a matches tra residui non identici (ad.es. pesare in modo diverso transizioni e transversioni)

14 MISURE DI IDENTITA’ E DI SIMILARITA’ E’ possibile misurare la similarita’ tra aminoacidi tenendo conto delle loro proprieta’ chimico-fisiche ad. es. l’ acido glutammico e’ piu’ simile all’acido aspartico che alla fenilalanina Un altro modo per misurare la similarita’ tra aminoacidi e’ fondato sulle frequenze osservate di specifiche sostituzioni aminoacidiche in opportuni gruppi di allineamenti. La similarita’ tra due specifici aminoacidi, diciamo A e G, e’ proporzionale alla frequenza con cui si osserva la sostituzione A->G. Le MATRICI DI SOSTITUZIONE piu’ conosciute ed utilizzate sono le matrici PAM (o Dayhoff Mutation Data (MD) Matrices) e le matrici BLOSUM.

15 Matrici di sostituzione Le matrici di sostituzione si basano su evidenze biologiche Le differenze che si osservano tra sequenze omologhe negli allineamenti sono riconducibili ad eventi di mutazione Alcune di queste mutazioni hanno effetti trascurabili sulla struttura/funzione della proteina

16 Esempio di matrice di sostituzione ARNK A5-2 R-7 3 N--70 K---6 Nonostante K e R siano due amminoacidi diversi, hanno uno score positivo. Perchè? Sono entrambi amminoacidi carichi positivamente.

MATRICI PAM (Dayhoff et al. 1978) Sono basate sul concetto di mutazione puntiforme accettata, Point Accepted Mutation (PAM) Le prime matrici PAM sono state compilate in base all’analisi delle sostituzioni osservate in un dataset costituito da diversi gruppi di proteine omologhe, ed in particolare su 1572 sostituzioni osservate in 71 gruppi di sequenze di proteine omologhe con similarita’ molto alta (85% di identita’) La scelta di proteine molto simili era motivata dalla semplicita’ dell’allineamento, senza necessita’ di introdurre correzioni per le multiple hits (sostituzioni come A->G->A or A->G->N)

MATRICI PAM L’analisi degli allineamenti mostro’ come diverse sostituzioni aminoacidiche si presentassero con frequenze anche molto differenti: le sostituzioni che non alterano seriamente la funzione della proteina, quelle “accettate” dalla selezione, si osservano piu’ di frequente di quelle “distruttive”. La frequenza osservata per ciascuna specifica sostituzione (es. A  G) puo’ essere usata per stimare la probabilita’ della transizione corrispondente in un allineamento di proteine omologhe. Le probabilita’ di tutte le possibili sostituzioni sono riportate nella matrice PAM

19 Matrici BLOSUM - Blocks Substitution Matrix (Henikoff and Henikoff, 1992) Matrici di sostituzione derivate dall’analisi di oltre 2000 blocchi di allineamenti multipli di sequenze, che riguardavano regioni conservate di sequenze correlate. Per ridurre il contributo di coppie di amminoacidi di proteine altamente correlate, gruppi di sequenze molto simili sono state trattate come se fossero sequenze singole ed e’ stato calcolato il contributo medio di ciascuna posizione. Utilizzando diversi cut-off per il raggruppamento di sequenze simili si sono ottenute diverse matrici BLOSUM (BLOSUM62, BLOSUM80, …)  Il nome della matrici indica la distanza evolutiva (BLOSUM62 è stata creata usando sequenze che non avevano più del 62% di identità)

BLOSUM 80 A R N D C Q E G H I L K M F P S T W Y V B Z X * A 7 R -3 9 N D C Q E G H I L K M F P S T W Y V B Z X *

21 L’utilizzo della matrice di similarita’ appropriata per ciascuna analisi e’ cruciale per avere buoni risultati. Infatti relazioni importanti da un punto di vista biologico possono essere indicate da una significativita’ statistica anche molto debole. Sequenze poco divergenti     molto divergenti BLOSUM80BLOSUM62BLOSUM45 PAM1 PAM120PAM250

22 GAP PENALTY SIMILARITY SCORE MATCHES MISMATCHES GAPS CALCOLO DEL PUNTEGGIO PER UN ALLINEAMENTO Data una coppia di sequenze Sa e Sb Per ogni coppia di elementi a i e b j di Sa e Sb si definisce un punteggio s(a i,b j ) s(a i,b j ) =  se a i = b j s(a i,b j ) =  se a i  b j, con  >  Ad ogni ogni gap viene assegnato un punteggio dato da: W k =  +  (k-1) Dove W k e’ una funzione lineare che assegna una penalita’ constante alla presenza del gap ( , ad es. -10) e una penalita’ proporzionale alla lunghezza del gap meno uno.  (gap opening penalty, GOP)  (gap extension penalty, GEP) Il punteggio complessivo risultera’:  (s(a i,b j ) ) +  ( W k )

23 ATTCCGAG | || A----GAC CALCOLO DEL PUNTEGGIO PER UN ALLINEAMENTO Sequenze:Possibile allineamento: ATTCCGAG AGAC Assegno i seguenti punteggi: Match: +2 Mismatch: -1 GOP: -5 GEP: -2 MATCHES33 x 2 = 6 MISMATCHES1 1 x –1 = -1 SIMILARITY SCORE 6 –1 = 5 GAPS1 (lungo 4 nucleotidi)  GOP + GEP X 3 GOP-5 GEP-2 x 3 GAP PENALTY-5 + (3 x –2) = -11 PUNTEGGIO FINALE5 – 11 = -6

24 ALGORITMI PER L’ALLINEAMENTO DI SEQUENZE Algoritmo di Needleman & Wunsch  allineamento globale Algoritmo di Smith & Waterman  allineamento locale

25 ALGORITMO DI NEEDLEMAN & WUNSCH PER L’ALLINEAMENTO GLOBALE Questo metodo permette di determinare l’allineamento globale ottimale attraverso un’interpretazione computazionale della matrice dotplot. Le sequenze vengono comparate attraverso una matrice 2D, le celle rappresentanti matches hanno punteggio 1 (0 per i mismatches). L’allineamento ottimale viene trovato senza tentare tuttii possibili allineamenti. L’algoritmo prevede che un problema computazionale complesso sia risolto dividendolo in piu’ sottoproblemi ragionevolmente semplici; l’insieme delle soluzioni ai sottoproblemi viene poi usato per trovare la soluzione al problema originale (programmazione dinamica).

26 Needleman-Wunsch Algorithm Tre fasi 1.Determinare residui identici. 2.Per ogni cella, cercare il valore massimo nei percorsi che dalla cella stessa portano all’inizio della sequenza e dare alla cella il valore del maximum scoring pathway. 3.Costruire un allineamento (pathway) andando indietro dalla cella con il punteggio piu’ alto fino all’inizio delle sequenze per ottenere l’allineamento ottimale.

27 Needleman-Wunsch Algorithm – FASE 1 Similarity values valore 1 oppure 0 ad ogni cella, in base alla similarita’dei residui corrispondenti Nell’esempio: –match = +1 –mismatch = 0

28 Needleman-Wunsch Algorithm – FASE 2 Per ogni cella, voglio determinare il valore massimo possibile per un allineamento che termini in corrispondenza della cella stessa Cerco le celle appartenenti alla colonna e alla riga precedenti a quelle della cella per trovare il valore massimo in esse contenuto Aggiungo questo valore al valore della cella corrente Procedo da “in alto sinistra” verso “in basso a destra” nella matrice

29 Needleman-Wunsch Algorithm – FASE 3 Costruisco l’allineamento Il punteggio dell’allineamento e’ cumulativo (posso sommare lungo i percorsi nella direzione stabilita) Il miglior allineamento ha il massimo punteggio (ovvero il massimo numero di matches) Questo massimo numero di matches si ritrovera’ nelle ultime righe o colonne L’allineamento si costruisce andando dalla cella col massimo numero di matches alla cella 1,1, passando per i punteggi piu’ alti. MP-RCLCQR-JNCBA | || | | | | | -PBRCKC-RNJ-CJA

30 Needleman-Wunsch Algorithm – FASE 3 MP-RCLCQR-JNCBA | || | | | | | -PBRCKC-RNJ-CJA

31 Allineamento locale. Perchè? Geni differenti in specie diverse possono presentare delle brevi regioni di similarità pur essendo diversi nelle restanti regioni Esempio: I geni Homeobox hanno una regione chiamata homeodomain che è altamente conservata. Un allineamento globale potrebbe non essere adeguato per individuare questi domini.

32 ALGORITMO DI SMITH & WATERMAN PER L’ALLINEAMENTO LOCALE Lo scopo degli algoritmi di allineamento locale di due sequenze e’ trovare la regioni piu’ lunga della prima sequenza che produce un allineamento ottimale, dati certi parametri, con una regione della seconda.

33 RICERCA DI SIMILARITÀ Una sequenza “da sola” non e’ informativa, deve essere analizzata comparativamente al contenuto dei database perche’ possano essere formulate delle ipotesi sulla sue relazioni evolutive con sequenze simili o sulla sua funzione. Domande cui si puo’ rispondere con una ricerca di similarita’: Data una sequenza, ci sono cose simili nel database? Ho trovato un nuovo gene o una nuova proteina? Il gene ha somiglianze con qualche altro gene nella stessa specie o in altre specie? Fare ipotesi sulla funzione di una proteina Trovare le regione di sovrapposizione tra sequenze contigue Trovare la regione genomica codificante un trascritto Studiare l’evoluzione di popolazioni o specie

34 BLAST Basic Local Alignment Search Tool (Altschul 1990) L’ algoritmo di BLAST e’ euristico e opera: 1Tagliando le sequenze da comparare in piccoli pezzi (parole) 2Ignorando tutte le coppie di parole (sequenza query/database) la cui comparazione da’ un punteggio inferiore ad un limite fissato 3Cercando di estendere tutte le hits rimanenti sino a che l’allineamento locale raggiunge un certo punteggio Dati una SEQUENZA QUERY ed un DATABASE DI SEQUENZE, BLAST ricerca nel database “parole” di lunghezza almeno “W” con un punteggio di similarita’ di almeno “T” una volta allineate con la sequenza “query” (HSP, High Scoring Pairs). Le “parole” selezionate vengono estese, se possibile, fino a raggiungere un punteggio superiore a “S” oppure un “E-value” inferiore al limite specificato.

35

36 La SIGNIFICATIVITA’ di un allineamento si calcola come P value o E value P value e’ la probabilita’ di ottenere un allineamento con punteggio uguale o migliore di quello osservato Si calcola mettendo in relazione il punteggio osservato (S) con la distribuzione attesa di HSP quando si comparano sequenze random della stessa lunghezza e composizione di quella in analisi (query sequence) Piu’ il Pvalue e’ vicino a 0 piu’ e’ significativo 2x e’ meglio do !!! E value e’ il numero atteso di allineamenti con punteggio uguale o migliore di quello osservato Piu’ e’ basso piu’ e’ buono

37

38 Usare BLAST OPZIONI Sequenza querynucleotidica proteica (sequenza in formato FASTA, GenBank Accession numbers o GI numbers) Databasedatabase di seq. nucleotidiche database di seq. proteiche ProgrammaStandard BLAST (blastn) Standard protein BLAST (blastp) translated blast (blastx, tblastn, tblastx) MEGABLAST PSI-BLAST PHI-BLAST … Blast selection table

39 Usare BLAST database di seq. nucleotidiche nr All GenBank+EMBL+DDBJ+PDB sequences (but no EST, STS, GSS, or phase 0, 1 or 2 HTGS sequences). No longer "non- redundant". est Database of GenBank+EMBL+DDBJ sequences from EST division. est_human est_mouse htgs Unfinished High Throughput Genomic Sequences yeast Saccharomyces cerevisiae genomic nucleotide sequences mito Database of mitochondrial sequences vector Vector subset of GenBank(R), NCBI, in month All new or revised GenBank+EMBL+DDBJ+PDB sequences alu Select Alu repeats from REPBASE, suitable for masking Alu repeats from query sequences. dbsts Database of GenBank+EMBL+DDBJ sequences from STS division. chromosome Searches Complete Genomes, Complete Chromosome, or contigs form the NCBI Reference Sequence project.

40 Usare BLAST PROGRAMMI Blastn Nucleotide query - Nucleotide db Blastp Protein query - Protein db Translating BLAST attraverso la traduzione concettuale della query sequence o dei database permette di comparare una sequenza nucleotidica con database di proteine o viceversa. Translated query - Protein db blastx Protein query - Translated db tblastn Translated query - Translated db tblastx MEGABLAST usa un algoritmo greedy (ingordo) veloce ed ottimizzato per comparare sequenze che differiscono poco Search for short nearly exact matches blastn con parametri scelti in modo da ottimizzare la ricerca di matches quasi esatti e brevi. Questi si trovano spesso per caso, percio’ utilizza alto E-value, piccola dimensione della parola e filtering PSI-BLAST Find members of a protein family or build a custom position- specific score matrix PHI-BLAST Find proteins similar to the query around a given pattern

41

42

43