Sistemi e Tecnologie della Comunicazione

Slides:



Advertisements
Presentazioni simili
Le linee di trasmissione
Advertisements

Cenni sugli amplificatori
Elaborazione numerica del suono
Mezzi trasmissivi metallici
Cenni sul campionamento
E.Mumolo. DEEI Reti di calcolatore e Applicazioni Telematiche – Livello fisico Lezioni di supporto al corso teledidattico E.Mumolo. DEEI.
E.Mumolo. DEEI Reti di calcolatore e Applicazioni Telematiche – Livello Dati Lezioni di supporto al corso teledidattico E.Mumolo. DEEI.
Esercizio 1 Un guscio sferico isolante di raggio R=0.1 m e spessore trascurabile, porta una carica positiva Q=1mC distribuita uniformemente sulla superficie.
Fondamenti di TLC - F. Beritelli
Codifica di linea La rappresentazione di dati numerici con segnali numerici e’ normalmente fatta tramite sequenze di impulsi discreti di tensione di una.
Il Suono Il suono è una perturbazione longitudinale prodotta da un corpo che vibra con una certa frequenza. Le corde vocali di una persona, le corde di.
Spettro di un segnale Secondo lo sviluppo in serie di Fourier un segnale periodico può essere descritto dalla somma di infinite sinusoidi ciascuna avente.
La trasmissione fisica dei segnali
Sistemi e Tecnologie della Comunicazione
Sistemi e Tecnologie della Comunicazione
Sistemi e Tecnologie della Comunicazione
Sistemi e Tecnologie della Comunicazione
Modulazione QAM: idea base
Corso di Tecniche e Sistemi di trasmissione Fissi e Mobili
Modulazioni digitali: ricevitori
TRASMISSIONE-DATI DIGITALE SU LINEE TELEFONICHE: GENERALITA’
ANALOGICO-DIGITALI (ADC) DIGITALE-ANALOGICI (DAC)
ANALOGICO-DIGITALI (ADC) DIGITALE-ANALOGICI (DAC)
ANALOGICO-DIGITALI (ADC) DIGITALE-ANALOGICI (DAC)
Conversione Analogico/Digitale
La conversione analogico-digitale, campionamento e quantizzazione
Laboratorio di El&Tel Elaborazione numerica dei segnali: analisi delle caratteristiche dei segnali ed operazioni su di essi Mauro Biagi.
Esperimentazioni di fisica 3 AA 2010 – 2011 M. De Vincenzi
Gli esseri viventi ricevono informazione direttamente dal mondo circostante e dai propri simili attraverso i sensi (percezione). La percezione, tuttavia,
ADSL VOIP Voice Over IP.
IL MODEM Che cos’è? A cosa serve? Che problemi risolve? Come comunica?
Limiti al trasferimento di informazione u Il tempo necessario per trasmettere dellinformazione dipende da: –la velocita di segnalazione (cioe quanto velocemente.
Il rumore termico, definizione
Campionamento e ricostruzione di segnali SEZIONE 7
La Trasmissione dei Segnali
Reti di CalcolatoriAndrea Frosini1 Reti di Calcolatori a.a. 2005/06 Esercizi.
TRASMISSIONE DATI CON MODEM
Sistemi di comunicazione
GRANDEZZE ANALOGICHE E DIGITALI
Laurea Ing EO/IN/BIO;TLC D.U. Ing EO 7
Digitalizzazione Un segnale viene digitalizzato, se il suo stato originario analogico viene tradotto e rappresentato mediante un insieme numerabile di.
Dinamiche caotiche nei Laser a Semiconduttore
RETI DI CALCOLATORI Domande di riepilogo Prima Esercitazione.
Concetti di Teoria dell'Informazione per informazione si intende tutto ciò che contribuisce ad eliminare incertezza. Infatti, se una sorgente di messaggi.
TESINA DI SISTEMI.
Laurea Ing EO/IN/BIO;TLC D.U. Ing EO 4
Free Powerpoint Templates Page 1 Free Powerpoint Templates I SEGNALI: ANALOGI-DIGITALI Luca Santucci 5°A Progr.
FILTRI.
Laurea Ing EO/IN/BIO;TLC D.U. Ing EO 6 PULSE CODE MODULATION (PCM)
Sistemi e Tecnologie della Comunicazione
LUCIDI dell'insegnamento di COMUNICAZIONI ELETTRICHE eo/in/bi
ADC – SCHEMA GENERALE I convertitori AD sono disponibili come circuiti integrati in diversi modelli, che differiscono fra loro per prezzo, prestazioni.
Networks: Data Encoding
Laurea Ing. EO/IN/BIO;TLC D.U. Ing EO 3
Esercizio 0 Qual è la frequenza più alta rappresentabile da un segnale digitale di 64 kbps? Risposta: Se parliamo di “frequenza rappresentabile” significa.
Protocolli avanzati di rete Modulo 2 -Multiplexing Unità didattica 1 – Infrastruttura di rete ottica Ernesto Damiani Università di Milano Lezione 1 – Introduzione.
Protocolli avanzati di rete Modulo 3 -Wireless network Unità didattica 3 - Medium Access Control (MAC) Ernesto Damiani Università degli Studi di Milano.
UNIVERSITÀ DEGLI STUDI DI PAVIA FACOLTA’ DI INGEGNERIA ELETTRONICA
25 ottobre 2010Propagazione in Esterno1 Propagazione del suono in ambiente esterno.
Bit singolo e burst u un canale che trasmette voce tollera bene gli errori distribuiti uniformemente –perche’ errori singoli hanno effetti simili al rumore.
Fondamenti di Informatica1 Tipi di reti Cluster: –elaborazione parallela, rete interna Rete locale: –edificio, rete privata Rete metropolitana: –città,
Scegliendo, invece, una rappresentazione con variabili complesse si ottiene:
1 Modulazioni Impulsive I.S.I.S.S. “F. FEDELE” di Agira (EN) Sez. I.T.I. “S. CITELLI” di REGALBUTO Prof. Mario LUCIANO MODULO 8: MODULAZIONI IMPULSIVE.
FILTRI NUMERICI. Introduzione Nel campo nei segnali (analogici o digitali), un sistema lineare tempo-invariante è in grado di effettuare una discriminazione.
VALVOLE e Classi di Funzionamento Carlo Vignali, I4VIL A.R.I. - Sezione di Parma Corso di preparazione esame patente radioamatore 2016.
La velocità di trasmissione Nelle reti l’unità di misura della velocità di trasmissione è il bit per secondo ( bit/s ). Un mezzo trasmissivo è caratterizzato.
Lezione XXIIII Rumore nei circuiti elettronici. Introduzione  Il rumore limita il minimo segnale che un circuito può elaborare mantenendo una qualità.
1 Ponti Radio Satellitari I.S.I.S.S. “F. FEDELE” di Agira (EN) Sez. I.T.I. “S. CITELLI” di REGALBUTO Prof. Mario LUCIANO MODULO 5: GUIDE D’ONDA Lezioni.
ANALISI DEI SEGNALI Si dice segnale la variazione di una qualsiasi grandezza fisica in funzione del tempo. Ad esempio: la pressione in un punto dello spazio.
Transcript della presentazione:

Sistemi e Tecnologie della Comunicazione Lezione 6: strato fisico: alterazioni in trasmissione e legge di Shannon; trasmissione digitale in banda base

Alterazioni dovute alla trasmissione dei segnali La trasmissione dei segnali e’ sempre accompagnata da alterazioni, che essenzialmente si distinguono in attenuazione (riduzione della intensita’ e distorsione) distorsione di ritardo rumore Queste alterazioni comportano la possibilita’ di commettere errori in ricezione, ed in generale stabiliscono un limite alla distanza che puo’ percorrere un segnale ed alla velocita’ di trasmissione che possiamo ottenere su una larghezza di banda limitata

Attenuazione Qualunque segnale viene attenuato per effetto del suo trasferimento su un mezzo trasmissivo, tanto piu’ quanto piu’ e’ grande la distanza che deve attraversare nei mezzi guidati in genere l’attenuazione ha un andamento logaritmico con la distanza nei mezzi non guidati e’ il risultato di molti fattori la cui analisi e’ piuttosto complessa (distanza, umidita’ dell’aria, pioggia, dispersione, …)

Attenuazione (cont.) Vanno considerati alcuni aspetti nella trattazione della attenuazione: un segnale deve essere ricevuto con una intensita’ tale da essere rilevato dai circuiti in ricezione, e deve essere distinguibile dal rumore (vedi oltre) l’effetto della attenuazione e’ una funzione che dipende dalla frequenza del segnale (da cui la distorsione in ricezione) Per ovviare al primo problema non e’ possibile semplicemente aumentare la potenza del segnale, per motivi di costi e perche’ al crescere della potenza compaiono effetti non lineari nel comportamento dei circuiti (in trasmissione o in ricezione) adibiti alla generazione o elaborazione del segnale

Attenuazione (amplificatori e ripetitori) Poiche’ oltre una certa distanza il segnale si attenua troppo, si ovvia a questo in due modi, a seconda del tipo di trasmissione nella trasmissione analogica vengono introdotti nel canale degli amplificatori, che aumentano la potenza del segnale il problema a cui si va incontro in questo caso e’ che un amplificatore amplifica anche il rumore, quindi oltre un certo limite amplificare diventa inutile nella trasmissione digitale vengono introdotti nel canale dei ripetitori, che ricostruiscono il segnale digitale e lo rigenerano ex-novo la rigenerazione ripulisce il segnale da tutti gli effetti distorsivi che lo hanno modificato fino a quel punto della trasmissione

Attenuazione (equalizzatori) La dipendenza della attenuazione dalla frequenza comporta una distorsione legata al fatto che le diverse frequenze che costituiscono il segnale originato vengono alterate in modo differente La somma delle armoniche attenuate non sara’ solo un segnale uguale attenuato, bensi’ un segnale differente (distorto) questo problema spesso viene limitato utilizzando delle tecniche di equalizzazione, che in base alla conoscenza delle caratteristiche del canale, possono amplificare in modo differenziato le diverse frequenze, correggendo l’effetto di distorsione (tipico nelle applicazioni foniche)

Effetto della equalizzazione

Distorsione di ritardo La distorsione di ritardo e’ conseguente al fatto che i segnali a diversa frequenza viaggiano nel mezzo trasmissivo a velocita’ diversa Questo comporta che in ricezione le diverse componenti arrivano in tempi diversi, cioe’ sfasate tra loro, quindi si ha una distorsione del segnale E’ un fenomeno tipico dei mezzi guidati Nel caso di trasmissioni digitali, alcune componenti del segnale relative ad un certo bit possono ritardare (o anticipare) ed interferire con le componenti relative a bit diversi (interferenza intersimbolica) anche in questo caso si adottano spesso tecniche di equalizzazione per correggere il comportamento del canale

Effetto della equalizzazione

Rumore Per rumore si intende un segnale presente sul canale (in ricezione) che non fa parte del segnale trasmesso Il rumore si divide in rumore termico (o rumore bianco) rumore di intermodulazione diafonia rumore impulsivo

Rumore termico Il rumore termico e’ provocato dalla agitazione degli elettroni dovuta alla temperatura Il rumore termico e’ presente sia nei circuiti dedicati alla generazione o ricezione del segnale, sia nel mezzo trasmissivo E’ caratterizzato da avere una intensita’ indipendente dalla frequenza (da qui il nome di rumore bianco) Non puo’ essere eliminato (nell’elettronica dei circuiti puo’ essere limitato aumentando il livello qualitativo della realizzazione dell’elettronica) si combatte aumentando il livello del segnale per quanto possibile

Rumore di intermodulazione Spesso si utilizza lo stesso mezzo trasmissivo per trasmettere segnali indipendenti che occupano diverse bande di frequenza disponibile su quel mezzo (multiplexing in frequenza, lo vedremo piu’ avanti) In questa circostanza sul canale ci saranno contemporaneamente, ad esempio, due segnali indipendenti a frequenza f1 ed f2 Effetti di non linearita’ possono generare segnali a frequenze multiple di (f1+f2) o (f1-f2), e questi potrebbero andare ad interferire con un terzo segnale contemporaneo trasmesso intorno a quelle frequenze Questi effetti possono essere conseguenza di malfunzionamenti o invecchiamento dell’elettronica, eccesso di potenza nel segnale trasmesso

Diafonia La diafonia e’ un fenomeno di accoppiamento elettrico tra mezzi trasmissivi vicini non isolati adeguatamente Il segnale trasmesso su un cavo genera per induttanza un segnale corrispondente nel cavo vicino, che si sovrappone al segnale trasmesso in quest’ultimo Si puo’ verificare anche nella trasmissione con mezzi non guidati, quando un segnale emesso da una antenna si disperde durante la propagazione nell’aria; la parte dispersa puo’ giungere in prossimita’ di un’altra antenna

Rumore impulsivo Questa categoria di rumore e’ conseguenza di fenomeni sporadici che possono generare segnali indesiderati di breve durata nell’elettronica o nel mezzo trasmissivo Esempi possono essere l’accensione di dispositivi elettrico-magnetici (monitor, forni a microonde) o sbalzi di tensione della alimentazione elettrica, in vicinanza dei circuiti o del mezzo trasmissivo A differenza degli altri, l’effetto del rumore impulsivo non e’ prevedibile a priori, ed e’ spesso molto piu’ elevato in intensita’ Ha un effetto limitato nelle trasmissioni analogiche, ma grave in quelle digitali (un picco di energia di 0.01 secondi su una linea telefonica non ha effetti sulla comunicazione vocale, ma fa perdere 560 bit in una comunicazione dati a 56 kbps)

Effetto del rumore nella trasmissione dati

Capacita’ del canale Quello che interessa nella trasmissione dati e’: dato un canale con determinate caratteristiche, e definito un tasso di errore accettabile, quale velocita’ di trasferimento dati posso ottenere? La legge di Nyquist (per un canale esente da rumore) dice che la capacita trasmissiva di un canale a banda B con livello di modulazione M e’ data da Tuttavia non si puo’ aumentare la banda a piacere (per motivi di costi, di impossibilita’ pratica o di scelta deliberata) Non si puo’ nemmeno aumentare a piacere il tasso di modulazione (M): aumentare il tasso di modulazione significa rendere piu’ complesso in ricezione distinguere il valore trasmesso, e fenomeni di distorsione o di rumore farebbero aumentare gli errori in ricezione

Legge di Shannon Shannon ha sviluppato e dimostrato una relazione relativa alla capacita’ trasmissiva massima di un canale in presenza di solo rumore bianco Detto SNR (Signal to Noise Ratio) il rapporto di potenza tra il segnale ed il rumore, la massima capacita’ in assenza di errori su un canale di banda B e’ data da: Questo e’ un limite massimo teorico, in pratica irraggiungibile (ad esempio perche’ non tiene conto di altri fattori distorsivi)

Commenti alla legge di Shannon Secondo la relazione vista, sembrerebbe possibile aumentare il tasso di trasferimento dati aumentando il livello del segnale Questo e’ vero, ma come gia’ osservato l’aumento del livello del segnale comporta l’aumento di effetti come la non linearita’ che vanno ad accrescere il tasso di errore in ricezione Quindi effettivamente la limitazione di banda costituisce un limite alla velocita’ di trasferimento dei bit

Esempio Supponiamo di avere un canale trasmissivo la cui banda sia da 3 a 4 MHz, ed il cui rapporto segnale su rumore sia 24 dB: La legge di Shannon dice che la capacita’ trasmissiva massima in assenza di errori e’ Con quale livello di modulazione posso ottenere questo tasso? Ce lo dice la legge di Nyquist:

Tipizzazione di dati e segnali Dati analogici: assumono valori continui in un determinato intervallo voce video dati raccolti da sensori quali temperatura, pressione, tensione o corrente elettrica,… Dati digitali: dati che assumono valori discreti in un certo intervallo testo (caratteri, rappresentati da codifiche opportune, come codice Morse, ASCII) numeri interi Segnali analogici: segnale elettromagnetico che varia le sue caratteristiche con continuita’ Segnali numerici: segnale elettromagnetico costituito da una sequenza di impulsi

Relazione tra dati e segnali Un dato analogico puo’ essere rappresentato con un segnale analogico che occupa lo stesso spettro. il segnale che rappresenta la voce nel sistema telefonico tradizionale e’ un segnale analogico con frequenza compresa tra 300 Hz e 3400 Hz, che riproduce lo spettro del suono emesso Un dato digitale puo’ essere rappresentato con un segnale digitale che identifichi i numeri con livelli di ampiezza degli impulsi E’ possibile rappresentare dati digitali con segnali analogici (modem) e dati analogici con segnali digitali (codec) la comunicazione tra calcolatori attraverso una linea telefonica: il dato numerico viene trasformato dal modem in segnale analogico, e ricostruito in ricezione nuovamente come dato numerico da un altro modem la comunicazione telefonica attraverso una linea ISDN: la voce viene digitalizzata mediante campionamenti da un codec, trasmessa come insieme di dati numerici, rigenerata come segnale analogico in ricezione

Trasmissione dei segnali La trasmissione dei segnali e’ detta analogica se il segnale viene trasmesso senza curarsi del suo significato in questo caso la trasmissione si limita a recapitare il segnale, eventualmente amplificandolo in intensita’ quando necessario la trasmissione digitale tiene conto del contenuto dei dati se si deve intervenire per amplificare il segnale il segnale non viene semplicemente amplificato, ma viene interpretato, si estrae il contenuto informativo e si rigenera il segnale tramite apparati detti ripetitori questo puo’ essere fatto a prescindere dal tipo di segnale (numerico o analogico), che a sua volta puo’ rappresentare dati analogici o numerici vantaggi della trasmissione digitale: immunita’ maggiore alla alterazione dei dati verso lunghe distanze omogeneizzazione della trasmissione per diverse tipologie di dato sicurezza e riservatezza svantaggi della trasmissione digitale costi superiori maggiore complessita’ dell’elettronica richiede rinnovo di infrastrutture gia’ esistenti

Trasmissione in banda base e modulata Una volta generato il segnale da trasmettere, questo puo’ essere immesso direttamente sul canale; in questo caso si parla di trasmissione in banda base: il segnale che trasporta le informazioni ed il segnale sulla linea sono identici Vi sono diverse circostanze che rendono opportuno trasmettere il segnale in modo che occupi una banda differente di frequenze; questo tipo di trasmissione si realizza tramite un processo di modulazione

Codifica dei dati numerici La rappresentazione di dati numerici con segnali numerici e’ normalmente fatta tramite sequenze di impulsi discreti di tensione di una certa durata temporale. Il dato binario e’ codificato in modo da far corrispondere al valore di un bit un determinato livello del segnale Il ricevitore deve sapere quando inizia e finisce il bit, leggere il valore del segnale al momento giusto, determinare il valore del bit in base alla codifica utilizzata La migliore valutazione si ottiene leggendo il valore del segnale nell’istante corrispondente a meta’ bit

Caratteristiche delle codifiche Sono possibili diverse scelte di codifica, con caratteristiche differenti che possono migliorare le prestazioni della trasmissione Le caratteristiche determinanti sono: spettro del segnale: componenti ad alta frequenza richiedono una banda maggiore l’assenza di componente continua e’ preferibile spettro concentrato nel centro della banda

Caratteristiche delle codifiche Altre caratteristiche determinanti sono: sincronizzazione temporale: il ricevitore deve essere sincronizzato con il trasmettitore per identificare i bit; alcune codifiche facilitano questa funzione rilevazione di errore: funzione caratteristica dei livelli superiori, ma puo’ essere utile anche a livello fisico solidita’ del segnale rispetto ad interferenza o rumore costo e complessita’ di realizzazione

Codifica unipolare RZ ed NRZ La codifica unipolare RZ (Return to Zero) prevede la trasmissione di un segnale di lunghezza T per ogni bit. Il segnale e’ nullo in corrispondenza del bit 0, mentre e’ un impulso di tensione di durata T/2 per il bit 1 La codifica unipolare NRZ (Non Return to Zero) differisce dalla RZ perche’ il livello di tensione per il bit 1 rimane alto per tutta la durata del bit

Caratteristiche della codifica NRZ La codifica NRZ ha i pregi: facile da progettare e realizzare utilizzo efficiente della larghezza di banda (la potenza e’ concentrata tra 0 ed R/2, dove R e’ la capacita’ trasmissiva in bit/s (transmission rate) Difetti: esiste una componente continua lunghe sequenze di bit di uguale valore producono un segnale continuo senza transizioni: il ricevitore puo’ perdere la sincronia

Codifica NRZ-L ed NRZI Per migliorare le caratteristiche si fa utilizzo di una codifica (NRZ-L: Non Return to Zero Level) che prevede un segnale a +V per il bit 1, ed a –V per il bit 0 questo riduce l’impatto della componente continua, ma non la annulla Altra tecnica: codifica differenziale (NRZI: NRZ Invert on ones): il segnale cambia in occasione di un bit 1

Codifica multilivello binario Le codifiche a multilivello binario utilizzano tre livelli: lo zero indica il bit 0, mentre il bit 1 e’ identificato con segnali a +V e –V alternati (AMI bipolare: Alternate Mark Inversion) La codifica pseudoternaria e’ la stessa, con 1 e 0 invertiti

Caratteristiche della codifica AMI La codifica AMI ha i seguenti vantaggi rispetto alla NRZ: risolve il problema della sequenza di bit 1, che presentano sempre una transizione utilizzabile in ricezione per sincronizzare (ma resta il problema per sequenze di 0) La componente continua e’ di fatto azzerata utilizza a parita’ di transmission rate una larghezza di banda inferiore errori isolati possono essere evidenziati come violazione del codice Vi sono anche svantaggi: utilizza 3 livelli, quindi ogni simbolo potrebbe trasportare piu’ informazione (log2(3) = 1.58) a parita’ di bit rate richiede circa 3 dB in piu’ rispetto alla NRZ Utilizzata in diversi casi su linee punto-punto (ISDN)

Codifica Manchester La codifica Manchester utilizza due livelli di tensione; il bit 1 e’ rappresentato da un segnale -V per mezzo periodo, +V per il seguente mezzo periodo; il bit 0 e’ rappresentato in modo opposto (+V per il primo mezzo periodo, -V per il restante mezzo periodo) La codifica Manchester differenziale utilizza lo stesso tipo di rappresentazione, ma rappresenta il bit 1 come variazione rispetto alla codifica del bit precedente

Caratteristiche della codifica Manchester Vantaggi: sincronizzazione: ogni bit ha una transizione in mezzo, che puo’ essere utilizzata per la sincronizzazione dal ricevitore totale assenza di componente continua rivelazione di errore (in assenza della transizione prevista) Svantaggi: richiede un segnale a frequenza doppia rispetto al bit rate: 1 bit richiede 2 baud, quindi richiede una banda doppia L’utilizzo piu’ diffuso della codifica Manchester e’ negli standard 802.3 (ethernet) e 802.5 (token ring) sia su coassiale che su doppino

Codifica B8ZS Una modifica della AMI per risolvere il problema della sequenza di zeri e’ la B8ZS (Bipolar with 8 Zeros Substitution): ogni sequenza di 8 zeri viene codificata come 000+-0-+ se l’ultimo impulso e’ stato positivo 000-+0+- se l’ultimo impulso e’ stato negativo in questo modo scompaiono lunghe sequenze di zeri, e la sequenza e’ identificata da due violazioni del codice AMI Utilizzata nel Nord America

Codifica HDB3 Stessa logica per la HDB3 (High Density Bipolar 3 zeros): ogni sequenza di 4 zeri viene codificata come se la polarita’ dell’ultimo impulso e’ stata negativa: 000- se c’e’ stato numero dispari di 1 dall’ultima sostituzione +00+ se c’e’ stato un numero pari di 1 dall’ultima sostituzione se la polarita’ dell’ultimo impulso e’ stata positiva: 000+ per un numero dispari di 1 dall’ultima sostituzione -00- per un numero pari di 1 dall’ultima sostituzione anche in questo caso scompaiono lunghe sequenze di zeri, e la sequenza e’ identificata da violazioni opportune del codice AMI Utilizzata in Europa e Giappone

Caratteristiche di B8ZS ed HDB3 Le due codifiche hanno sempre componente continua nulla (le violazioni sono alternate) Hanno un efficiente utilizzo della banda, con la potenza concentrata a meta’ della banda come con AMI, e’ possibile riconoscere gli errori singoli Generalmente utilizzate nella trasmissione dati ad elevata distanza

Spettro delle codifiche numeriche in banda base