Organi Fiori Sistema di tessuti Tegumentale Foglie Vascolare Parenchimatico Fusto Radici
Funzioni della foglia Fotosintesi Regolazione della perdita di acqua (stomi) Riserva (aloe) Protezione (spine, scaglie) Attrazione e cattura (piante carnivore) Le variazioni della struttura dipendono dagli habitat: Mesofite (ambienti né troppo umidi, né troppo caldi) Idrofite (piante acquatiche) Xerofite (piante in ambienti secchi) Foglie eliofile: intensità luminose alte Sciafile: a basse intensità luminose
Caratteristiche di foglie Foglia di dicotiledone lamina nervatura picciolo Foglia composta Pennata Foglia composta Palmata Foglia di monocotiledone
Foglie composte
Cellule di guardia Epidermide superiore cuticola Parenchima a palizzata Cloroplasti mesofillo Xilema Floema Epidermide inferiore Mesofillo spugnoso
Cuticola Epidermide superiore Mesofillo: parenchima a palizzata Guaina del fascio Xilema Nervatura Floema Epidermide inferiore Masofillo: parenchima spugnoso Cellule di Guardia dello stoma Cuticola
Epidermide superiore Mesofillo: Tessuto a palizzata Fasci vascolari Mesofillo: tessuto spugnoso Cellule di guardia Epidermide inferiore Stomi
Stomi chiusi Quando le cellule di guardia perdono Acqua si restringono e lo stoma si chiude Quando le cellule di guardia assorbono Acqua si rigonfiano e le pareti interne Si separano per distensione delle Pareti esterne, lo stoma si apre; Stomi aperti
Elevato vapore acqueo Gli stomi si aprono per far entrare la CO2 nella foglia e far fuoriuscire il vapore acqueo ed ossigeno
La guttazione consiste nell'eliminazione di acqua allo stato liquido dalle foglie che si verifica quando, per l'eccessiva umidità atmosferica, la traspirazione (perdita di acqua sotto forma di vapore) non può avvenire regolarmente o quando la quantità d'acqua assorbita dalle radici è superiore a quella traspirata dalle foglie. Il fenomeno avviene attraverso gli stomi
Rubisco: Ribulosio bifosfato carbossilasi
Caratteristiche di Monocotiledoni Cotiledone Tepali Tepali Parte fiorale Seme con un solo cotiledone Fascio vascolare Foglia con venature parallele Fusto con fasci vascolari (atactostele)
Foglie di monocotiledoni
Cellule bulliformi Guaina del fascio
Cyperus papyrus L. (papiro)
Le piante C4 hanno sviluppato un meccanismo più efficiente per far arrivare la CO2 all'enzima Rubisco. L'enzima PEPcarbossilasi nelle cellule del mesofillo catalizza la reazione tra CO2 e PEP formando ossalacetato, un composto a 4 atomi di carbonio (che danno il nome al ciclo). L'ossalacetato diffonde attraverso i plasmodesmi nelle cellule adiacenti (quelle della guaina del fascio). Qui viene decarbossilato (cede un carbossile al ribulosio-1-5-difosfato). Qui poi il Ciclo di Calvin fissa per mezzo dell'enzima rubisco la CO2 riducendola a glucosio. Il piruvato, formato dalla decarbossilazione dell'ossalacetato, torna alle cellule del mesofillo dove viene fosforilato dall'ATP per formare nuovamente acido fosfoenolpiruvico e mantenere attivo il ciclo.
Foglia C3 Foglia C4 epidermide palizzata epidermide Palizzata Fascio vascolare epidermide Parenchima spugnoso palizzata Cellule Guaina fascio Foglia C3 Foglia C4
Mais C4 – Poaceae (Graminaceae) il mais, il sorgo e la canna da zucchero,
Piante CAM – Metabolismo Acido delle Crassulaceae: consente di ottimizzare l'attività fotosintetica in ambienti estremi, ad esempio nei deserti. Crassulaceae, nelle Cactaceae e in alcune specie di altre famiglie (es. Ananas, Agave, Sedum, ecc.),
lo svolgimento della fotosintesi avviene anche con gli stomi chiusi Piante CAM: lo svolgimento della fotosintesi avviene anche con gli stomi chiusi La fase luminosa e la fase buia sono infatti separate nel tempo: durante la notte la pianta apre gli stomi, permettendo l'ingresso della CO2 che sarà fissata da un acido a tre atomi di carbonio (C3), prevalentemente l'acido malico, accumulato nei vacuoli. Durante il giorno, a stomi chiusi, gli acidi C4 accumulati nel corso della notte saranno metabolizzati nel ciclo di Calvin