LEZIONE 17 Acidi nucleici e farmaci

Slides:



Advertisements
Presentazioni simili
Biologia Il dna.
Advertisements

Geni costitutivi e non costitutivi
Ogni essere vivente è dotato di
MICROSCOPIA.
I Catalizzatori delle reazioni biologiche
Liceo Scientifico-Classico
DNA --> RNA --> Proteine
Lez 7 Processamento dell’RNA negli eucaroti: RNA splicing
ACIDI NUCLEICI…E NON SOLO…
SINTESI PROTEICA.
STRUTTURA DUPLICAZIONE SINTESI DELLE PROTEINE
I farmaci antivirali devono inibire un infezione in atto
TRASCRIZIONE del DNA.
Escherichia coli Molto studiato da un punto di vista genetico, fisiologico e strutturale Molto studiato da un punto di vista genetico, fisiologico e strutturale.
LEZIONE 6 Acidi nucleici e farmaci
Gli Acidi nucleici Acido desossirobonucleico o DNA
Mechanisms of antisense action on target genes
La Sintesi Proteica.
Amminoacidi/peptidi/proteine
Bioinformatica Corso di Laurea Specialistica in Informatica Analisi della struttura dell’RNA 27/04/2011.
CATALISI CHIMICA.
Micro RNA (miRNA) Piccole molecole di RNA (20-22 nt)
Opinione studenti II anno A-K Per la stragrande maggioranza degli studenti, il bilancio per il II anno A-K, è nettamente positivo. Infatti se vogliamo.
Gli atomi: la base della materia
Funzioni, struttura e caratteristiche
Farmaci mirati e cura di pazienti affetti da tumori
FACOLTA’ DI MEDICINA E CHIRURGIA
D N A LA MOLECOLA DELLA VITA.
Prof. Paolo Abis Speranzina Ferraro - 14 dicembre 2006.
Clonaggio: vettori plasmidici
LE BIOMOLECOLE Le BIOMOLECOLE sono organiche biologicamente fondamentali, sia dal punto di vista strutturale che funzionale: -Lipidi -Carboidrati -Proteine.
Gli amminoacidi.
LE PROTEINE Relatori: Regolo Matteo Scavuzzo Pasquale
UNITA’ DIDATTICA: L’RNA
CORSO DI BIOLOGIA - Programma
CORSO DI BIOLOGIA - Programma
INTRODUZIONE ALLA BIOCHIMICA
DNA --> RNA --> Proteine
PROTEINE: “TRASCRIZIONE” e “TRADUZIONE”
Acidi nucleici e proteine
Cosa sono i GENI I geni rappresentano l’unità strutturale e funzionale della genetica Un gene è una successione lineare di unità chimiche semplici (nucleotidi)
Il materiale ereditario
DNA – REPLICAZIONE (1) Semiconservativa: Catene genitrici
Ibridazione degli acidi nucleici e
I nucleotidi, composti ricchi di energia svolgono diverse attività a supporto del metabolismo cellulare I polimeri dei nucleotidi, acidi nucleici, forniscono.
LEZIONE 8 Ingegneria cellulare
AMINOGLICOSIDI.
Peptidi, proteine ed enzimi
DNA: The life molecule La ricerca del materiale genetico (da Eissman a Hershey e Chase) La struttura del DNA (da Chargaff a Watson e Crick) Le funzioni.
I nucleotidi, composti ricchi di energia svolgono diverse attività a supporto del metabolismo cellulare I polimeri dei nucleotidi, acidi nucleici, forniscono.
Chimica Organica Corso di Laurea in: Farmacia Capitolo Acidi Nucleici.
La trascrizione del DNA
Fattori di crescita Membrana citoplasmatica Recettori di fattori
STRUTTURA DUPLICAZIONE SINTESI DELLE PROTEINE
Sintesi dell’ RNA.
ESTRAZIONE DNA ANALISI QUANTITATIVA
La Fabbrica delle Proteine
Trascrizione Processo mediante il quale l’informazione contenuta in una sequenza di DNA (gene) viene copiata in una sequenza complementare di RNA dall’enzima.
VETTORI NON VIRALI. VETTORI Vettori: veicolo per l’introduzione e l’espressione di un gene.
Transcript della presentazione:

LEZIONE 17 Acidi nucleici e farmaci CORSO DI LAUREA SPECIALISTICA IN BIOTECNOLOGIE DEL FARMACO Adriana Maggi BIOTECNOLOGIE FARMACOLOGICHE AA 20010-11 LEZIONE 17 Acidi nucleici e farmaci

Gli acidi nucleici, oltre a riconoscere e ibridare con altre molecole di DNA sono in grado di assumere una struttura tridimensionale che permette loro di interagire con specificità anche con altre macromolecole quali, ad es., le proteine.

FLESSIBILITA’ DEL DNA FLESSIBILITA’ DEL DNA Struttura del complesso CAP-DNA. La struttura del DNA consentono una forte interazione con proteine dell’apparato trascrizionale, per esempio. FLESSIBILITA’ DEL DNA

MOTIVI STRUTTURALI CHE PERMETTONO LEGAME AD ALTA AFFINITA’ TRA PROTEINE E DNA                                                                            

APTAMERI Sono ORN o ODN capaci di riconoscere una specifica sequenza amminoacidica o un epitopo appartenente ad una proteina Sono stati scoperti per caso osservando l’alterazione del processo di coagulazione, dovuto ad un aumento del tempo di protrombina in seguito alla somministrazione di ODN antisenso. In queste molecole e’ presente un “G quartet” che conferisce al DNA la capacità di legare la trombina inattivandola

APTAMERO PER L’a-TROMBINA Organizzazione strutturale dell’aptamero per l’a-trombina e disposizione dei quartetti di guanina che ne stabilizzano la conformazione

STRUTTURA DI ALCUNI APTAMERI Riconoscimento di ligandi aromatici piatti: A: strutture B: teofillina-RNA C: FMN-RNA D: AMP-DNA E: AMP-RNA Riconoscimento di aminoacidi basici: A: strutture B,C: arginina-DNA D: arginina-RNA E: citrullina-RNA Riconoscimento di peptidi e proteine: A:peptide derivante dalla proteina Rev del virus umano HIV-1 B,C: diversi aptameri RNA Rev D, E: aptamero proteina di rivestimento del batteriofago MS2-RNA Riconoscimento dell’antibiotico aminoglicoside tobramicina: A: struttura B: aptamero tobramicina-RNA C: la tasca che accoglie il ligando

APTAMERI CON STRUTTURA 3D DETERMINATA Ligando Acido nucleico Affinita’ Kd (mM) Teofillina FMN AMP Arginina Citrullina Tobramicina Neomicina B HIV-1 Rev peptide HTLV-1 Rex peptide MS2 coat protein Trombina RNA DNA/RNA DNA 0,3 0,5 6/10 125/60 65 0,009 0,115 0,004 0,025 ND

IDENTIFICAZIONE DI APTAMERI IN GRADO DI LEGARE PROTEINE AD ALTA AFFINITA’ A tutt’oggi è impossibile indicare a priori se esistano e quali siano le sequenze di DNA in grado di riconoscere una definita struttura enzimatica L’analisi basata sui metodi computazionali richiede tempi di elaborazione esageratamente prolungati per stabilire la conformazione spaziale di macromolecole L’isolamento di aptameri ad attività biologica richiede lo sviluppo di metodologie sperimentali specifiche

SELEX ( Selection of functional nucleic acids) UNA METODOLOGIA CHE NASCE: dalla evoluzione delle tecniche di sintesi in vitro di acidi nucleici che permette la generazione di innumerevoli sequenze “degenerate” di nucleotidi Dalla disponibilità della PCR che permette di amplificare all’infinito sequenze specifiche di DNA

SELEX ( Selection of functional nucleic acids) Random or doped DNA pool Generazione di una diversità di sequenza (sintesi chimica, manipolazione enzimatica, PCR) Selezione di forme funzionali attraverso il legame con il bersaglio e l’eliminazione di molecole non affini Amplificazione della popolazione selezionata con metodiche di PCR Step successivi di selezione e riamplificazione per isolare le molecole più efficienti cDNA Regenerated DNA pool Trascribed RNA pool

DNA SELEX ( Selection of functional nucleic acids) la libreria di oligo contiene 1013 -1015 molecole ciascuna molecola è di 20-100 nt ciascuna molecola contiene sequenze di fiancheggiamento che permettono l’appaiamento dei primers necessari per la reazione di PCR per la reazione di SELEX le molecole di DNA sono a singolo filamento (ottenute per separazione di prodotti di PCR)

RNA SELEX ( Selection of functional nucleic acids) La libreria di oligo contengono 1013 -1015 molecole di RNA a singolo filamento ottenute tramite la trascrizione in vitro di templati a doppio filamento di DNA mediante polimerasi T7

METODI ALTERNATIVI PER L’IDENTIFICAZIONE DI APTAMERI Il gruppo di Clary alla Duke University ha identificato oligonuceotidi che si legavano a un tumore indotto in topo. Gli oligo sono stati iniettati in vivo, poi estratti dalla massa tumorale e amplificati. Due degli oligo selezionati legavano un biomarcatore tumorale (P68) molto espresso nel tumore indotto nei topi.

POTENZIALE TERAPEUTICO DEGLI APTAMERI 1. Possono essere utilizzati come gli anticorpi, ma hanno il vantaggio di essere prodotti di sintesi (quindi sono scevri da contaminazioni virali/batteriche) Non sono immunogenici Possono essere funzionalizzati o legati a molecole di riconoscimento A differenza di aODN possono agire su target extracellulari: generalmente bloccano interazioni ligando- recettore e quindi hanno funzioni di “antagonisti” per recettori di membrana Molecole dotate di capacità traslazionale (dal laboratorio all’ospedale)

POTENZIALE TERAPEUTICO DEGLI APTAMERI 2. Limitazioni nell’uso di aptameri in terapia Difficolta’ di predizione delle caratteristiche farmacocinetiche Breve emi-vita dovuta a filtrazione renale (dovuta alle loro ridotte dimensioni) Degradazione rapida nel circolo (fino a 2 min per oligo naturali, ma prolungabile fino a 24h nell’uomo mediante PEGilazione es. Macugen Pfizr/Eyetech) Problemi brevettuali (il brevetto per la tecnologia SELEX –systematic evolution of ligands by exponential enrichment) è in scadenza (US PATENT 5271163 del 14/12/1993) Difficoltà di penetrazione di membrane biologiche

MODIFICAZIONI CHIMICHE PER AUMENTARE LA POTENZA TERAPEUTICA DEGLI APTAMERI Aumento emivita Tutte le modificazioni chimiche descritte per aODN Coniugazione al 5’ con polietilenglicole (PEG) Uso di Spigelmers in cui lo zucchero è un enantiomero del ribosio (L-ribonucleotidi sono pessimi substrati per le nucleasi, ma anche per la polimerasi) ”capping” dei nucleonucleotidi a livello 3’ L’unico aptamero in commercio (pagaptanib) è peghilato

TOSSICOLOGIA DEGLI APTAMERI Possono agire quali anticoagulanti/attivatori del complemento e stimolatori della immunità innata L’azione anticoagulante forse associata al fatto che il DNA è un polianione come l’eparina L’azione di attivazione del complemento pare essere legata alla possibilità degli oligonucleotidi di legarsi al fattore H del complemento

BLOCCO DELLA ATTIVITA’ ANTICOAGULANTE DI APTAMERI L’INIEZIONE DI OLIGONUCLEOTIDI “ANTISENSO” NEI CONFRONTI DI QUELLO TERAPEUTICO HA FUNZIONATO COME “ANTIDOTO”

APTAMERI IN CLINICA

APTAMERI IN CLINICA Pegaptinib (Pfizer/Eyetech) – approvato dalla USFDA nel 2004 e sul mercato per la terapia della degenerazione maculare. Si tratta di un aptamero che lega il VEGFA con una affinità pari a 49pM. Originariamente identificato in una libreria SELEX, una volta selezionato è stato ridotto a 27 nt con sostituzione di 12 delle 14 ribopurine con 2’-o-metil-purine per limitare la sensibilità alle nucleasi. Inoltre il nucleotide è stato peghilato per aumentarne la stabilità e limitare la sua capacità di distribuirsi nei tessuti. Viene somministrato tramite iniezione intravitrea (0.3 mg/occhio) una volta ogni 6 settimane per limitare la angiogenesi aberrante causata dalla maculopatia. In competizione con il frammenti di anticorpo Ranimizumab (Genetech, Lucentis) che lega tutte le forme di VEGFA.

AS1411 Oligo di 26 nucleotidi (solo G e T) che pare esercitare effetti antiproliferativi legando la nucleolina (una proteina coinvolta nella sintesi e maturazione dei ribosomi). L’aptamero inoltre pare destabilizzare la proteina Bcl2 in B-linfomi, e NFkB. AS1411 è in fase clinica II per la cura della leucemia mieloide acuta e per il tumore del rene

REG1 (Regado Biosciences) Un aptamero specifico per il fattore di coagulazione IX per il quale ha una affinità pari a 2.8 nM in studio per operazioni di intervento percutaneo sulle coronarie. Contiene 34 nucleotidi e proviene da uno screening SELEX di una libreria di molecole 2’-ribo purine/2’-fluoropirimidine.

ARC1779 (Archemix) Un aptamero che lega il dominio A1 del fattore di vonWillebrand (Kd=2nM) e ha effetto antitrombotico senza attività anticoagulante. E’ stato identificato nello screening di una library di oligodegenerati ed è stato troncato a 39 nucleotidi. La sequenza è stata prodotto come fosfotioato con un cap al 3’, l’oligo è peghilato. In fase II per microagiopatie trombotiche in pazienti con patologie della carotide che subiscono chirurgia della carotide.

NOX-A12 (NOXXON Pharma) Lega il ligando della chemochine 12, una chemochina ritenuta rilevante nella metastatizzazione tumorale e nella angiogensi. E’ un l-RNA (Spiegelmer) sviluppato per trapianto autologo di cellule emopoietiche in pazienti con linfoma non-Hodgkin (attualmente in fase I)

APTAMERI IN DIAGNOSTICA Aptamero legante della tenascina per imaging di neoplasie in sviluppo da parte della Schering AG

SVANTAGGI DEGLI APTAMERI COME FARMACI Come gli aODN sono molecole relativamente poco stabili Problemi nella distribuzione e nella biodisponibilità Costo di produzione NB. Possono però essere modificati chimicamente per aumentarne la stabilità e si possono utilizzare le metodologie di veicolazione già viste per gli ODN

VANTAGGI DEGLI APTAMERI COME FARMACI Interagiscono specificatamente con i loro target La grande area superficiale degli acidi nucleici permette la formazione di più interazioni con il bersaglio rispetto ai farmaci classici, ciò determina un legame molto stretto (Kd nel range nanomolare e picomolare) Sono in grado di inibire la funzione del loro bersaglio ma anche di modificare il metabolismo associato a quel bersaglio es. aptameri anti-trombina bloccano anche la coagulazione del sangue

UTILIZZO DEGLI APTAMERI L’UTILIZZO TERAPEUTICO è ancora incerto Sono utili MEZZI DIAGNOSTICI grazie alla loro alta affinità e specificità per il bersaglio. Come gli anticorpi possono essere legati a molecole radioattive o ad enzimi la cui attività può essere facilmente valutata. Sono però più piccoli e maneggevoli degli anticorpi

Referenze bibliografiche: Aptamers as therapeutics AD Keefe, S Pai and A Ellington Nature Review on Drug Discovery 9:537, 2010

DECOY Sono brevi sequenze di DNA omologhe ad una sequenza consenso per una proteina transattivante. Il decoy inibisce la funzione della proteina legandosi in modo competitivo al sito di riconoscimento della proteina con la sequenza consenso

MECCANISMO D’AZIONE DI DECOY CHE INIBISCONO LA PROLIFERAZIONE CELLULARE cdk P RB Ciclina A E2F C-myc C-myb Cdc2 Kinase PCNA cdk RB P Ciclina A Silente TTTCGCGC E2F TTTCGCGC cdk TTTCGCGC TTTCGCGC Ciclina A RB P Silente TTTCGCGC Transattivante E2F TTTCGCGC TTTCGCGC

DECOYS IN THERAPY oligonucleotide mimicking a negative regulatory sequence of promoter C of estrogen receptor alpha (ER alpha) gene is sufficient for its re-expression in ER-negative human cancer cell lines NFκB decoy oligo therapy for IBD (Inflammatory Bowel Disease) E2F Decoy Transfection by HVJ-AVE–Liposome Method Cardiac Allograft Arteriopathy

NUOVI TARGET TERAPEUTICI

DIFFERENZE APTAMERI/DECOY RNA o DNA singolo o doppio filamento Omologhi di consensus dell’RNA legano proteine citoplasmatiche DECOY ODN a doppia elica Omologhi di consensus dell’DNA legano proteine nucleari

GLI OLIGONUCLEOTIDI ANTI-GENE (TRIPLEX) L’oligonucleotide si lega in modo specifco al DNA, intercalandosi nella struttura a doppia elica, formando un tratto di catena tripla che determina l’inattivazione della replicazione del DNA e della trascrizione dell’mRNA

VANTAGGI DELLA TERAPIA ANTIGENE RISPETTO AGLI ODN Tale modalità di impiego mostra prospettive alquanto interessanti poiché l’azione diretta sul gene implica l’uso di quantità inferiori di ODN essendo in questo caso solo due i targets (le due copie del gene) rispetto ai numerosissimi targets della strategia ODN (le copie dell’mRNA). Si garantisce inoltre una più durevole attività terapeutica contando sulla maggiore durata dell’emivita del gene rispetto a quella del messaggero.   Questa strategia comporta la formazione di un breve tratto a tripla elica (mediante legami di Hoogsteen) nelle regioni di controllo della trascrizione presenti nel DNA.

TRIPLEX Le prime indicazioni, indirette circa la possibilità di formazione di un tratto di DNA a tripla elica risale a studi sulla densità ottica con miscele di poli U e poli A condotti da B. Felsenfeld nel 1957. Hoogsteen chiarisce la natura dei legami che consentono la formazione della tripla elica in tratti omopurinici e omopirimidinici (AG o TC). In questo contesto la C non presenta atomi disponibili per un ponte idrogeno con la G prospiciente e deve essere quindi protonata. Tale reazione può avvenire a un pH leggermente acido (6,6) e in presenza di ioni bivalenti. In queste condizioni l’ODN ibridizza con la sequenza omopurinica complementare mediante legami di Hoogsteen, formando così le due triplette T-AT e C-GC. L’ODN si colloca nel solco maggiore del duplex preesistente con una orientazione parallela alla sequenza omopurinica del DNA bersaglio.

LEGAMI DI HOOGSTEEN

PROBLEMATICHE DELLA TERAPIA ANTI-GENE Il bersaglio deve essere costituito da sequenze omopuriniche/pirimidiniche La lunghezza della sequenza bersaglio deve essere minimo di 15 nucleotidi consecutivi Il rapporto A/G non deve essere inferiore a 4 molte sequenze 5’ rispetto ai DNA codificanti hanno tratti omopurinici 4. Tutte le C devono essere protonate e quindi occorre agire a pH più bassi di quello fisiologico. Questo problema può essere superato con alcuni stratagemmi

METODICHE PER SUPERARE L’OSTACOLO DELLA PROTONAZIONE utilizzo nella sintesi dell’ODN di 5-metilcitosina che consente l’ibridizzazione al duplex anche a pH neutri Utilizzare ODN costituiti da PNA che hanno una migliore capacità di ibridizzare Utilizzo di molecole intercalanti legate all’ODN, capaci di legare una base sul duplex conferendo una maggiore stabilità alla tripla elica Sostituire la base citosina con l’eterociclo 2-aminopiridina, il cui pKa è maggiore di quello della citosina e ciò favorisce il legame a pH neutro

CHIMICA DEL LEGAME PNA-DNA Watson-Crick PNA Strand Hoogsteen DNA Strand PNA Strand invasion COO- NH3+ 5’ 3’ CHIMICA DEL LEGAME PNA-DNA I PNA possono legarsi al DNA sia attraverso legami idrogeno sia di Hoogsteen

I RIBOZIMI

I RIBOZIMI + + + + - + - + - + + - + Exon 1 Intron1 Exon 2 Exon 1 Nel 1982 Thomas Cech dimostra che un introne del protista Tetrahymena termophila è in grado di promuovere in vitro la propria escissione specifica (splicing) dal precursore dell’RNA ribosomale di cui fa parte. + Exon 1 Intron1 Exon 2 Exon 1 Exon 2 Intron 1 I prodotti di spicing sono stati separati per gel elettroforesi: + + + + pre-rRNA Nuclear extract - + - + La catalisi di tale reazione è indipendente da componenti proteiche GTP - + + - pre-rRNA Spliced exon Richiede solo nucleotidi guanosinici (GMP, GDP, GTP o guanosina) e ioni Mg2+ Intron circle Intron linear

RIBOZIMI NATURALI Producono nel taglio di un RNA substrato estremità 3’OH e 5’ fosfato. Sono raggruppabili in classi in base alla loro struttura ed alle reazioni in cui sono coinvolti RNAsi P: Ubiquitaria, è responsabile della maturazione dei tRNA nel loro estremo 5’ RNAsi HRP: Replicazione DNA mitocondriale tagliando RNA primer INTRONI tipo I: Tetrahymena pre RNA mitocondriale di lievito geni di cloroplasti INTRONI tipo II: con meccanismo di splicing conservato (precursori di mRNA in organelli di funghi e piante)

CARATTERISTICHE COMUNI AI RIBOZIMI Reazione di formazione e rottura di legami covalenti in molecole substrato a RNA I ribozimi sono catalizzatori di reazioni che li vedono altresì implicati come substrato La struttura tridimensionale dell’enzima determina la sua specificità di legami con il substrato a creare il sito catalitico Le reazioni catalizzate sono basate sullo scambio di protoni (con conseguente idrolisi o transesterificazione risultanti nel taglio di legami fosfodiesterici) I ribozimi sono metallo-enzimi

INTRONI DI TIPO I L’attività catalitica degli introni di tipo I dipende dalla loro struttura secondaria o terziaria altamente conservata La struttura catalizza lo splicing in 5’ e 3’ entro un sito attivo (“core”) e attivando i ponti fosfodiesterici ai siti di splicing Molti dei domini conservati esterni al “core” possono essere eliminati senza evidenti perdite di fonzionalità

MECCANISMO D’AZIONE DEGLI INTRONI DI TIPO I 1. Attacco nucleofilo della guanina presente nell’ambiente 2. Generazione di un terminale OH 3. Seconda transesterificazione per attacco nucleofilo del terminale libero sul primo nucleotide dell’esone in 3’

SITI ATTIVI NEGLI INTRONI DI TIPO I

STRUTTURA SECONDARIA CARATTERISTICA DEGLI INTRONI DI TIPO I esone1 P7 esone2 P8 P9 P3,P4,P6,P7 rappresentano il “core” dell’introne, ovvero la minima porzione che mantiene l’attività catalitica Le sequenze delle regioni P4 e P7 sono conservate. P1 si appaia alla fine dell’esone 1 e l’inizio dell’introne. La regione tra P7 e P9 si appaia all’estremità 3’ dell’introne.

STRUTTURA TERZIARIA DEGLI INTRONI DI TIPO I

INTRONI DI TIPO II Group II Group I A G Exon 1 Exon 2 OH Exon 1+ 2 + 2’ G HO 3’ Exon 1 Exon 2 OH Exon 1+ 2 A + Group I Group II

MECCANISMO D’AZIONE DEGLI INTRONI DI TIPO II Usano il 2’ OH di una adenina interna all’introne Attacca il 5’ fosfato sul primo nucleotide dell’introne L’introne assume una struttura circolare tipica detta “lariat” Gli esoni sono uniti e l’introne è exciso mantenendo la struttura “lariat” Un enzima appositamente deputato taglia il “lariat” e origina un introne lineare L’introne lineare viene degradato A 2’ HO Exon 1 Exon 2 A 2’ OH 2’ A Exon 1+2 +

STRUTTURA SECONDARIA DEI RIBOZIMI DI TIPO II Da I a VI sono indicati i domini conservati dell’introne. I segmenti tratteggiati indicano le regioni di interazione a distanza Schema della reazione catalizzata dagli introni di tipo II

STRUTTURA DEI RIBOZIMI HAMMERHEAD Lo schema rappresenta il cambiamento di struttura in due fasi, indotto dal legame di ioni Mg2+. La prima fase consiste nella formazione di un dominio coassiale tra due eliche la seconda genera il core catalitico. Il ribozima con la struttura finale è in grado di auto-tagliarsi nel punto indicato dalla freccia rossa

STRUTTURA CRISTALLOGRAFICA DEI RIBOZIMI HAMMERHEAD La struttura cristallina evidenzia 5 siti di legame per il Mg2+

STRUTTURA SECONDARIA E TERZIARIA DEI RIBOZIMI HAMMERHEAD La sequenza CUGA adiacente allo stem loop I è sufficiente per il taglio Struttura terziaria

RIBOZIMI MECCANISMO D’AZIONE -1 RNA è una molecola meno stabile del DNA perché l’O in 2’ può attaccare il legame fosfodiesterico adiacente (attacco nucleofilo) e romperlo, lasciando un fosfato 2’-3’ ciclico e un ossidrile in 5’. MODALITA’ DI TAGLIO DI RNA: RNAsi P e introni di tipo I e II catalizzano l’idrolisi del legame fosfodiesterico, lasciando un fosfato in 5’ e un ossidrile in 3’ Le reazioni di taglio che dipendono dall’O in 2’ possono essere attivate in due modi: Ambiente alcalino: l’O in 2’ si attiva per ionizzazione Ribonucleasi A catalizza la reazione di taglio usando un residuo basico di istidina per spostare il protone dell’O al 2’ e un residuo acido di aspartato per trasferirlo al 5’

RIBOZIMI MECCANISMO D’AZIONE -2 La carica positiva di un residuo di lisina adiacente interagisce con il fosfato e lo stabilizza durante lo stato di transizione. Il fosforo tende ad assumere una conformazione a bipiramide trigonale durante lo stato di transizione e questo può spiegare perché il taglio mediato dall’O al 2’ è più rapido in presenza di nucleotidi (pirimidina, adenosina) specifici perché le interazioni tra basi possono influenzare la conformazione del legame fosfodiestere

APPLICAZIONI TERAPEUTICHE DEI RIBOZIMI-1 Ribozima con mRNA corretto Sono attivi in “CIS” cioè intramolecolarmente. Studi in corso prevedono manipolazioni per indurli a lavorare in “TRANS” ad esempio per il riparo di RNA mutati o danneggiati. Esempio: ripristino del controllo della proliferazione cellulare agendo su p53 mRNA mutato + mRNA corretto mRNA scartato ribozima

RIBOZIMI IN CLINICAL TRIALS-1 ANGIOZYME TM Ribozima disegnato per inibire il VEGF (Vascular Endothelial Growth Factor). ANGIOGENESIS HEPTAZYME TM Ribozima che lega sequenze altamente conservate del virus dell’epatite C HCV DRUG RESISTANCE