Semantica per formule di un linguaggio proposizionale p.9 della dispensa.

Slides:



Advertisements
Presentazioni simili
Le frazioni Vogliamo ampliare l’insieme numerico N con un insieme numerico nel quale sia sempre possibile eseguire la divisione . Per fare ciò dobbiamo.
Advertisements

Microsoft Excel I riferimenti.
“ LAUREE SCIENTIFICHE ”
LOGICA.
LIMITI:DEFINIZIONI E TEOREMI
Punti Fissi.
Informatica Generale Marzia Buscemi IMT Lucca
Intelligenza Artificiale
Le parti del discorso logico e informatico
= 2x – 3 x Definizione e caratteristiche
Il ragionamento classico
Intelligenza Artificiale 1 Gestione della conoscenza lezione 8
Sistemi basati su conoscenza Conoscenza e ragionamento Prof. M.T. PAZIENZA a.a
Informatica 3 Codifica binaria.
Corso di Informatica (Programmazione)
EQUAZIONI DI PRIMO GRADO
Semantica di Tarski.
Qualche esempio di tableaux
Unità Didattica 1 Algoritmi
L'algebra di Boole e le sue applicazioni
Lezione 3 informatica di base per le discipline umanistiche vito pirrelli Istituto di Linguistica Computazionale CNR Pisa Dipartimento di linguistica Università
Intelligenza Artificiale
Intelligenza Artificiale - AA 2001/2002 Logica formale (Parte 2) - 1 Intelligenza Artificiale Breve introduzione alla logica classica (Parte 2) Marco Piastra.
Intelligenza Artificiale
Intelligenza Artificiale - AA 2002/2003 Logica formale (Parte 2) - 1 Intelligenza Artificiale Breve introduzione alla logica classica (Parte 2) Marco Piastra.
Diagramma degli stati che descrive il comportamento della rete.
Logica Matematica Seconda lezione.
I primi insiemi che si incontrano in matematica sono quelli dei numeri;  daremo qui una breve descrizione dei principali insiemi numerici, delle loro operazioni.
Elementi di Logica matematica Prima parte
2. Premesse all’analisi infinitesimale
Si ringraziano per il loro contributo gli alunni della
INFORMATICA MATTEO CRISTANI. INDICE CICLO DELLE LEZIONI LEZ. 1 INTRODUZIONE AL CORSO LEZ. 2 I CALCOLATORI ELETTRONICI LEZ. 3 ELEMENTI DI TEORIA DELL INFORMAZIONE.
Riferimenti di cella.
EXCEL E FTP.
Pierdaniele Giaretta Primi elementi di logica
ELEMENTI DI LOGICA.
LA LOGICA Giannuzzi Claudia Stefani Simona
Agenti logici: calcolo proposizionale Maria Simi a.a. 2008/2009.
La logica di Frege Come sapete Frege è stato il maestro riconosciuto e ammirato da Wittgenstein (“le grandiose opere di Frege” dice nel Tractatus.
Le equazioni x2 − 4 = 0 1 x = x0 + v • t + a • t2 2
Corso di logica matematica
PRESENTAZIONE DI RAGANATO ROBERTO, BISCONTI GIAMMARCO E
La logica è lo studio del ragionamento.
Logica Lezione Nov 2013.
F. Orilia Logica F. Orilia
Algebra di Boole.
Introduzione a Javascript
Logica F. orilia. Lezz Lunedì 4 Novembre 2013.
Ragionare nel quotidiano
LA SOTTRAZIONE Beatrice Reina 1A.
Didattica e Fondamenti degli Algoritmi e della Calcolabilità Terza giornata: principali classi di complessità computazionale dei problemi Guido Proietti.
Logica A.A Francesco orilia
Logica A.A Francesco orilia
La logica Dare un significato preciso alle affermazioni matematiche
Logica Lezz Nov Reiterazione (RE) P |- P 1 P A 2 P & P 1,1, &I 3 P 2, & E.
LOGICA.
Copyright © Istituto Italiano Edizioni Atlas
Le quattro operazioni.
ELEMENTI DI LOGICA MATEMATICA
La logica degli enunciati interamente realizzata da GIANNUZZI SILVIA
ELEMENTI DI LOGICA del Prof. Giovanni Ianne
LA LOGICA MATEMATICA.
Operazioni con gli insiemi
Le proposizioni DEFINIZIONE. La logica è un ramo della matematica che studia le regole per effettuare ragionamenti rigorosi e corretti. DEFINIZIONE. Una.
Logica Lezione 8, DISTRIBUIRE COMPITO 1.
Logica Lezione 19, Distribuire compito 3 DATA esame in classe intermedio: Lunedì 20 aprile.
Logica Lezione 11, Annuncio Non si terrà la lezione di Lunedì 16 Marzo.
Logica Lez. 5, Varzi su affermazione del conseguente Malgrado alcuni esempi di questa forma siano argomentazioni valide, altri non lo sono.
INSIEMI E LOGICA PARTE QUARTA.
Le frazioni A partire da N vogliamo costruire un nuovo insieme numerico nel quale sia sempre possibile eseguire la divisione. Per fare ciò dobbiamo introdurre.
Transcript della presentazione:

Semantica per formule di un linguaggio proposizionale p.9 della dispensa

Per stabilire la verità di una formula proposizionale, fissiamo innanzitutto il fatto che accettiamo di avere solo due possibili valori di verità: il vero e il falso (si dice che la nostra logica proposizionale è bivalente)

Poi definiamo lattribuzione del valore di verità ad una formula per gradi, a partire dalle formule più semplici (le atomiche, costituite dalla sola lettera proposizionale P, Q, R…) fino a quelle sempre più complesse (che contengono uno o più connettivi).

Si parte, quindi, assegnando valori di verità alle formule atomiche. Tale assegnamento è libero: non ha nessun carattere di necessità.

Se si vuole usare una terminologia matematica, questo atto di assegnamento può essere rappresentato come una funzione (cioè unoperazione) che va dallinsieme delle formule atomiche allinsieme dei valori di verità, in quanto è unoperazione che, ricevendo in entrata formule atomiche, dà in uscita il verdetto, cioè il valore di verità di ciascuna (che, appunto, è preso dallinsieme dei due valori, vero/falso).

Per rappresentare tutto ciò con una scrittura simbolica, chiamiamo: V lassegnamento, L linsieme delle formule atomiche, 2 linsieme dei due valori vero e falso (non storcete il naso: 2 è un simbolo come un altro, che può essere utilizzato come nome di un insieme – perché no?- specialmente se linsieme contiene due sole cose!)

Il vero e il falso possono essere rappresentati, ciascuno, con V e F, oppure con T (true) e F, oppure con 1 e 0.

Quindi, quanto appena detto a proposito dellassegnamento dei valori di verità alle formule atomiche può essere scritto così:

V: L 2 che esprime il fatto che la funzione V prende in entrata formule atomiche e dà in uscita un valore di verità (I due punti dopo la V stanno a significare, appunto, che si sta per esplicitare come lavora quella funzione con quel nome)

La scritta 2:= {1,0} è la definizione dellinsieme che ha come nome 2. Si tratta, appunto, dellinsieme che contiene i due membri 1 e 0 che vengono utilizzati per rappresentare il vero e il falso (:= è un simbolo che significa che si sta per definire il simbolo scritto alla sua sinistra)

Una volta assegnato il valore di verità alle formule atomiche, il valore delle formule composte resta fissato automaticamente sulla base delle tavole di verità per i connettivi, che sono state date alle pp. 7 e 8.

Quelle tavole possono anche essere espresse in maniera abbreviata come segue:

Tavola di verità della negazione A ¬A 10 01

Può essere espressa come: V( ¬A) := 1-V(A) che significa che: [V ( ¬A )] lassegnamento di valore di verità a ¬A [:= ] è definito con loperazione 1-V(A), cioè togliendo a 1 il valore di verità di A

Infatti Osservando la tabella, vediamo che: Se V(A) è 1, (cioè, se nella colonna di sinistra cè il valore 1), Allora V( ¬A ) è 1-1, cioè 0 (cioè, nella colonna di destra cè valore 0).

Se V(A) è 0, (cioè, se nella colonna di sinistra cè il valore 0), V( ¬A ) è 1-0, cioè 1 (cioè, nella colonna di destra cè valore 1).

Tavola di verità della disgiunzione AB A B

può essere espressa come: V( A B) := max (V(A), V(B)) che significa che: V( A B) lassegnamento di valore di verità a A B [:= ] è definito con loperazione che sceglie max (V(A), V(B)), cioè il maggiore tra i valori di verità attribuiti, volta per volta, ad A e a B:

Infatti, Osservando la tabella, vediamo che: alla prima riga, dove abbiamo come valore di A (cioè come V(A)) 1 e come valore di B (cioè come V(B)) ancora 1, abbiamo come valore di A B (cioè come V(A B)) 1, che è il massimo tra 1 e 1.

alla seconda riga, dove abbiamo come valore di A (cioè come V(A)) 1 e come valore di B (cioè come V(B)) 0, abbiamo come valore di A B (cioè come V(A B)) 1, che è il massimo tra 1 e 0.

alla terza riga, dove abbiamo come valore di A (cioè come V(A)) 0 e come valore di B (cioè come V(B)) 1, abbiamo come valore di A B (cioè come V(A B)) 1, che è il massimo tra 0 e 1.

alla quarta riga, dove abbiamo come valore di A (cioè come V(A)) 0 e come valore di B (cioè come V(B)) ancora 0, abbiamo come valore di A B (cioè come V(A B)) 0, che è il massimo tra 0 e 0.

Tavola di verità della congiunzione AB A B

può essere espressa come V( A B) := min (V(A), V(B)) che significa che: V( A B) lassegnamento di valore di verità a A B [:= ] è definito con loperazione che sceglie min(V(A), V(B)), cioè il minimo tra i valori di verità attribuiti, volta per volta, ad A e a B:

Infatti Osservando la tabella, vediamo che: alla prima riga, dove abbiamo come valore di A (cioè come V(A)) 1 e come valore di B (cioè come V(B)) ancora 1, abbiamo come valore di A B (cioè come V(A B)) 1, che è il minimo tra 1 e 1.

alla seconda riga, dove abbiamo come valore di A (cioè come V(A)) 1 e come valore di B (cioè come V(B)) 0, abbiamo come valore di A B (cioè come V(A B)) 0, che è il minimo tra 1 e 0.

alla terza riga, dove abbiamo come valore di A (cioè come V(A)) 0 e come valore di B (cioè come V(B)) 1, abbiamo come valore di A B (cioè come V(A B)) 0, che è il minimo tra 0 e 1.

alla quarta riga, dove abbiamo come valore di A (cioè come V(A)) 0 e come valore di B (cioè come V(B)) ancora 0, abbiamo come valore di A B (cioè come V(A B)) 0, che è il minimo tra 0 e 0.

Tavola di verità dellimplicazione AB A B

può essere espressa come V( A B) := max (1-V(A), V(B)) che significa che: V( A B) lassegnamento di valore di verità a A B [:= ] è definito con loperazione che sceglie max (1-V(A), V(B)) cioè il massimo tra : (1-V(A)), ossia ciò che si ottiene sottraendo da 1 il valore di verità di A e V(B) il valore di verità di B.

Infatti Osservando la tabella, vediamo che: alla prima riga, dove abbiamo come valore di A (cioè come V(A)) 1 e come valore di B (cioè come V(B)) ancora 1, abbiamo come valore di A B (cioè come V(A B)) 1, che è il massimo tra: 1-V(A) [cioè 1-1], che è 0 e V(B) che è 1.

alla seconda riga, dove abbiamo come valore di A (cioè come V(A)) 1 e come valore di B (cioè come V(B)) 0, abbiamo come valore di A B (cioè come V(A B)) 0, che è il massimo tra: 1-V(A) [cioè 1-1], che è 0 e V(B) che è 0.

alla terza riga, dove abbiamo come valore di A (cioè come V(A)) 0 e come valore di B (cioè come V(B)) 1, abbiamo come valore di A B (cioè come V(A B)) 1, che è il massimo tra: 1-V(A) [cioè 1-0], che è 1 e V(B) che è 1.

alla quarta riga, dove abbiamo come valore di A (cioè come V(A)) 0 e come valore di B (cioè come V(B)) ancora 0, abbiamo come valore di A B (cioè come V(A B)) 1, che è il massimo tra: 1-V(A) [cioè 1-0], che è 1 e V(B) che è 0.

Tavola di verità della biimplicazione AB A B

Per cui si capisce subito che: V (A B)=1 se e solo se V(A)=V(B). Infatti, il valore di verità di è 1 solo alla prima e ultima riga, dove, rispettivamente, A e B hanno entrambi valore 1 e valore 0.

Ultime definizioni A questo punto, si possono introdurre le seguenti definizioni relative ad una formula A: 1) è una TAUTOLOGIA (o VERITA LOGICA) se risulta VERA secondo OGNI ASSEGNAMENTO di verità; 2) è una CONTRADDIZIONE (o è REFUTABILE) se risulta FALSA secondo OGNI ASSEGNAMENTO di verità;

3) è SODDISFACIBILE se e solo se è vera per almeno un assegnamento.