LA STRUTTURA DELLA MATERIA

Slides:



Advertisements
Presentazioni simili
Corso di Chimica Fisica II 2011 Marina Brustolon
Advertisements

Dalla Grecia ai giorni nostri
Chimica Generale e Stechiometria
STRUTTURA DELL'ATOMO Protoni (p+) Neutroni (n°) Elettroni (e­) Gli atomi contengono diversi tipi di particelle subatomiche.
Chimica e laboratorio L’atomo: configurazione elettronica e tavola periodica Classi quarte Docente: Luciano Canu Anno Scolastico 2005/2006.
Il sistema periodico Mendeleev.
Corso di Chimica Fisica II 2011 Marina Brustolon
Dalla Grecia ai giorni nostri
Breve storia dei modelli atomici
La struttura dell’atomo
Relazione fra energia e frequenza
LEZIONE 2 Onde e particelle Equazione di Planck/Equazione di Einstein
Proprietà periodiche Quale è il significato di periodicità?
Orbitali atomici e numeri quantici
Chimica e laboratorio L’atomo: configurazione elettronica
Chimica e laboratorio L’atomo & le particelle subatomiche
Principi fisici di conversione avanzata (Energetica L.S.)
Come sono sistemate le particelle all’interno dell’atomo?
La chimica : scienza sperimentale e quantitativa
MODELLI ATOMICI secondo Joseph John Thomson Ernest Rutherford Niels Bohr Arnold Sommerfeld Luis De Broglie Werner Heisemberg Ervin Schrdinger.
CHIMICA Il modello atomico della materia
Riassunto della seconda lezione
Legge periodica di Dmitri Mendeleev (1869): le proprietà degli elementi chimici variano con il peso atomico in modo sistematico per es. fu lasciato uno.
Esercizi.
CONFIGURAZIONE ELETTRONICA
La struttura dell’atomo ed i legami chimici
Corso di Laurea in Ingegneria Aerospaziale A. A
LA STRUTTURA DELLA MATERIA
LA NATURA DELLA LUCE E IL MODELLO ATOMICO DI BOHR
Il modello atomico a orbitali
(a) (b) LEGAME CHIMICO ED ENERGIA
IL LINGUAGGIO DELLA CHIMICA
La più piccola porzione di un elemento chimico che conservi le proprietà dellelemento stesso. La parola "atomo", che deriva dal greco átomos, "indivisibile",
Un atomo è quindi composto da un nucleo formato da nucleoni (protoni e neutroni) e da elettroni (in egual numero dei protoni, quando l'atomo è elettricamente.
GLI ATOMISTI Leucippo e Democrito presero dal loro predecessore Parmenide (520 – 455 a. C.) l’idea di particelle elementari basilari, e da Eraclito quella.
La struttura dell’atomo Modulo 3 U.D. 2
Unità Didattica 2 La natura duale della luce e l’atomo di idrogeno
Copertina 1.
= frequenza Atomo BOHR e quantizzazione
L’atomo di idrogeno Elena Dalla Bonta’ Dipartimento di Astronomia
Sviluppo della fisica quantistica
Le basi della teoria quantistica
Modello Atomico di Thomson
Orbitale atomico Gli orbitali si compenetrano!
MODELLI ATOMICI Rutherford Bohr (meccanica quantistica)
Informazioni importanti circa la dimensione dell’atomo e la distribuzione della massa concentrata nel nucleo Rappresentazione dell’atomo Rutherford (1911)
Proprietà e Trasformazioni della MATERIA
Il comportamento di una sostanza può essere interpretato in maniera completa solo se si conosce anche la natura dei legami che tengono uniti gli atomi.
COME E’ FATTA LA MATERIA?
Per la luce: onda/particella
Abbiamo parlato di.. Energie nucleari Difetto di massa
Onde e particelle: la luce e l’elettrone
La struttura dell’atomo ed i legami chimici
La teoria quantistica 1. Fisica quantistica.
COMPORTAMENTO DUALISTICO della MATERIA
Il comportamento di una sostanza può essere interpretato in maniera completa solo se si conosce anche la natura dei legami che tengono uniti gli atomi.
MATERIA Tutto ciò che possiede massa e occupa spazio Massa Grandezza fisica fondamentale Esprime la quantità di materia contenuta in un corpo Unità di.
Introduzione alla chimica generale
Thomson. Il suo atomo Esperimenti di Thomson Rutherford.
MOLE Unità utilizzata in chimica per rappresentare quantitativamente grandi numeri di atomi, ioni e molecole E’ la quantità in grammi corrispondente alla.
OBIETTIVO DELLA LEZIONE conoscere I punti fondamentali riguardanti : teorie atomiche, proprietà periodiche,. 1.Ascoltate e guardate l’informazione nella.
Ripasso per il compito Teorie atomiche : Thomson, Rutherford, Bohr numero atomico, numero di massa, isotopi.
La Tavola Periodica.
Gli elettroni nell’atomo e il sistema periodico
Mario Rippa La chimica di Rippa primo biennio.
IL LEGAME CHIMICO.
Transcript della presentazione:

LA STRUTTURA DELLA MATERIA Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE LA STRUTTURA DELLA MATERIA a fine corso… La struttura dell’atomo: il nucleo La struttura dell’atomo: gli elettroni - Il legame chimico - Le forze di interazione intermolecolari

LA STRUTTURA DELL’ATOMO Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE LA STRUTTURA DELL’ATOMO Abbiamo già visto come l'atomo sia costituito da un nucleo intorno al quale ‘orbitano’ gli elettroni; il nucleo a sua volta è costituito da protoni e neutroni. Gli elettroni hanno carica negativa, i protoni hanno carica positiva, i neutroni non hanno carica. il termine ‘orbitare’ non è corretto, vedi più avanti!! + - atomo di idrogeno: 1 protone nel nucleo + 1 elettrone orbitante atomo di elio: 2 protoni (+ 2 neutroni privi di carica) nel nucleo + 2 elettroni orbitanti - + + -

TEORIA ATOMICA (Dalton, 1807) Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE Ma come si è arrivati a questa visione dell’atomo? La moderna teoria atomica deve le sue origini alle osservazioni di Dalton sulle masse degli elementi che si combinano per formare i composti (leggi ponderali). TEORIA ATOMICA (Dalton, 1807) Punti principali della Teoria Atomica di Dalton: 1) La materia è costituita da particelle piccolissime "elementari“ che non sono ulteriormente scomponibili - gli atomi; 2) gli atomi si combinano secondo numeri piccoli e interi per formare i diversi composti; 3) gli atomi di un certo elemento sono uguali e il loro peso non cambia durante la trasformazione chimica nella visione di Dalton l’atomo è l’entità più semplice e indivisibile che costituisce la materia

Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE Diverse osservazioni sperimentali effettuate fra fine 800 e inizio 900 (JJ Thomson, RA Millikan) confutarono la teoria di Dalton mettendo in evidenza come l’atomo fosse costituito da “entità” ancora più piccole dotate di carica positiva e negativa. schema del dispositivo di Thomson che prova l’esistenza degli elettroni: una scarica elettrica attraversa un gas rarefatto all’interno di un tubo di vetro; la scarica elettrica produce particelle dotate di carica che risentono del campo elettrico applicato; le particelle con carica negativa e massa molto piccola sono proprio gli elettroni (identificati per la prima volta)

L’evoluzione dei modelli dell’atomo Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE L’evoluzione dei modelli dell’atomo JJ Thomson (1899): a seguito delle sue osservazioni, Thomson formulò un primo modello (sbagliato!) per la struttura degli atomi secondo cui gli elettroni (particelle di carica negativa che lui stesso scoprì) sono immersi in una sfera di carica positiva (“come i canditi nel panettone”) panettone=sfera di carica positiva uniforme canditi=elettroni

L’evoluzione dei modelli dell’atomo Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE L’evoluzione dei modelli dell’atomo E Rutherford (1911): dai risultati di una serie di esperimenti risultò evidente che la carica positiva non può essere distribuita uniformemente come suggerito da Thomson; la carica positiva deve essere localizzata in uno spazio ridotto al centro dell’atomo (il nucleo) intorno al quale ruotano gli elettroni (modello planetario). Risultato atteso se il modello di Thomson fosse corretto fascio di particelle alfa (He2+) schema dell’esperimento di Rutherford atomo a panettone Risultato effettivo le particelle alfa sono nuclei di elio (con doppia carica positiva, He2+)

Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE Secondo il modello planetario di Rutherford, l'atomo è formato da un nucleo intorno al quale ruotano uno o più elettroni; il nucleo è molto piccolo (dimensioni ~ 10-12-10-13 cm), ha carica positiva ed è molto pesante (quasi tutta la massa dell'atomo vi si trova concentrata); gli elettroni sono carichi negativamente, hanno una massa quasi trascurabile, ma occupano la quasi totalità del volume dell'atomo (dimensioni ~ 10-8- 510-8 cm) Anche il modello di Rutherford è stato superato. Resta però il grande merito di aver messo in evidenza l’esistenza del nucleo.

QUANTIZZAZIONE dell'ENERGIA: (Planck e Einstein) Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE Il modello di Rutherford, tuttavia, non era consistente con i principi della fisica allora noti: secondo tale modello gli elettroni (dotati di carica negativa) non precipitano per attrazione elettrostatica sul nucleo (dotato di carica positiva) perché la forza di attrazione elettrostatica è bilanciata dalla forza centrifuga associata al movimento di rotazione intorno al nucleo (come i pianeti intorno al sole). Tuttavia, secondo la fisica classica, una particella elettricamente carica in movimento perde incessantemente parte della sua energia. Quindi, gli elettroni in movimento circolare intorno al nucleo dovrebbero perdere energia fino a "collassare" sul nucleo stesso. In quello stesso periodo storico, altri fenomeni fisici ponevano il problema del superamento della fisica classica. Per esempio, la radiazione del corpo nero, gli spettri di emissione dell’atomo di idrogeno etc. Tutto ciò portò al concetto di QUANTIZZAZIONE dell'ENERGIA: (Planck e Einstein) 1) l'energia non è una grandezza continua ma è quantizzata, cioè può essere ceduta o trasmessa solo in quantità discrete, multiplo di un valore fisso detto quanto 2) la radiazione elettromagnetica, che in precedenza veniva considerata come un'onda, ha anche una natura corpuscolare  natura dualistica della luce

Modello dell'atomo di Bohr (1913) Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE Modello dell'atomo di Bohr (1913) 1) Per il moto di un elettrone sono permessi solo alcuni stati stazionari in corrispondenza di orbite circolari (o ellissoidali, Sommerfeld); a ciascuno di questi stati stazionari corrisponde un valore definito di energia; 2) quando l'atomo è in uno di questi stati stazionari, non emette luce; quando invece passa da uno stato a più alto contenuto energetico a uno a più basso contenuto energetico, l'atomo emette un quanto la cui energia è pari alla differenza di energia fra i due stati;  spiegazione dello spettro di Balmer 3) gli stati permessi di moto degli elettroni sono caratterizzati da un momento angolare dell'elettrone multiplo di h/2 (quantizzazione del momento angolare)

Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE Il modello proposto da Bohr riusciva a spiegare alcune delle osservazioni sperimentali dell’epoca, come lo spettro di emissione degli atomi di idrogeno o di atomi idrogenoidi. Tuttavia non era esauriente rispetto ad altre osservazioni e inoltre introduceva l’idea di orbita o stato stazionario con dei postulati, cioè assunzioni fatte per rendere conto dei fenomeni osservati, ma non riconducibili ad alcuna spiegazione. Il modello attualmente accettato per la struttura dell’atomo è il modello ondulatorio proposto da Schroedinger pochi anni dopo. Il modello proposto da Schroedinger è stato reso possibile dal lavoro precedente di altri studiosi; in particolare De Broglie (natura ondulatoria dell’elettrone, dualismo onda particella) e Heisenberg (principio di indeterminazione).

Schroedinger: modello ondulatorio dell'atomo (1925) Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE Schroedinger: modello ondulatorio dell'atomo (1925) Nel nuovo modello di atomo non si parla di orbite ma di ORBITALI; essi sono una espressione matematica che permette di calcolare la probabilità di trovare un elettrone in un certo istante in un punto dello spazio che circonda il nucleo considerato (più precisamente, è il quadrato della funzione associata all’orbitale che rappresenta tale probabilità); ad ogni elettrone si associa una onda stazionaria la cui frequenza ne determina l’energia e la cui ampiezza dà una misura della probabilità di trovare la particella. Le funzioni matematiche  che descrivono gli orbitali sono dette autofunzioni e sono definite dalle soluzioni della equazione di Schroedinger H  = E  Vedi libro di testo, Cap 3 per ulteriori dettagli

Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE I numeri quantici Risolvendo l'equazione di Schroedinger per l'atomo di idrogeno, si trovano diverse funzioni d'onda (orbitali) che la soddisfano; ciascuno di essi è caratterizzato da una serie di numeri detti numeri quantici che ne descrivono compiutamente le proprietà: numero quantico principale, n n=1,2,3,... è relazionato alla dimensione e alla energia dell'orbitale: maggiore è il valore di n, maggiore è la dimensione dell'orbitale e quindi l'elettrone ha meno probabilità di trovarsi vicino al nucleo; quindi un valore grande di n implica anche un valore grande di energia numero quantico azimutale, l per ogni valore di n, l=0, 1, ..., n-1 è relazionato alla forma degli orbitali atomici l=0  s l=1  p l=2  d l=3  f numero quantico magnetico, ml ml= -l, -l+1, ..., 1, 0, 1, ..., l-1, l è relazionato alla orientazione relativa degli orbitali nello spazio

coordinate polari Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE coordinate polari

funzione d’onda dell’ orbitale 1 s funzione d’onda dell’ orbitale 2 s Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE orbitale 1 s orbitale2 s funzione d’onda dell’ orbitale 1 s funzione d’onda dell’ orbitale 2 s quadrato della funzione d’onda dell’ orbitale 1 s distribuzione di probabilità di trovare l’elettrone in quel punto dello spazio intorno al nucleo quadrato della funzione d’onda dell’ orbitale 2 s ci sono dei punti in cui la probabilità è nulla

Orbitali s l=0 forma sferica 1s 2s 3s n=1 l=0 ml=0 n=2 l=0 ml=0 n=3 Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE Orbitali s l=0 forma sferica Gli orbitali si rappresentano graficamente con una “superficie limite” = superficie che delimita la zona dello spazio equivalente al 90% di probabilità di trovare l'elettrone 1s n=1 l=0 ml=0 2s n=2 l=0 ml=0 3s n=3 l=0 ml=0

Orbitali p l=1 Gli orbitali p sono 3 poichè l=1 e quindi sono Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE Orbitali p l=1 Gli orbitali p sono 3 poichè l=1 e quindi sono possibili i valori di ml=-1,0,+1

Orbitali d l=2 Gli orbitali d sono 5 poichè l=2 e quindi sono Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE Orbitali d l=2 Gli orbitali d sono 5 poichè l=2 e quindi sono possibili i valori di ml=-2,-1,0,+1,+2

Orbitali f l=3 Gli orbitali f sono 7 poichè l=3 e quindi sono Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE Orbitali f l=3 Gli orbitali f sono 7 poichè l=3 e quindi sono possibili i valori di ml=-3,-2,-1,0,+1,+2,+3

Schema degli orbitali n l ml numero di orbitali autofunzioni 1 100 2 Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE Schema degli orbitali n l ml numero di orbitali autofunzioni 1 100 2 -1,0,+1 3 200 21-1,210 , 211 -2,-1,0,1,+1 5 300 31-1,310 , 311 32-2,32-1 , 320,321 , 322 4 -3,-2,-1,0,+1,+2,+3 7 400 41-1,410 , 411 42-2,42-1 , 420,421 , 422 53-3,53-2 , 53-1,530 , 531 532,533

n dimensione ed energia n=1,2,3,4 Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE n dimensione ed energia n=1,2,3,4 l forma s=0 sferica p=1 lobata d=2 f=3 ml orientazione nello spazio s  1 orbitale p  3 orbitali d  5 orbitali f  7 orbitali

Atomi polielettronici Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE Atomi polielettronici Il modello ondulatorio si applica con successo anche alla trattazione di atomi con più di un elettrone; la trattazione in questo caso è più complessa perché è necessario considerare anche la repulsione fra elettroni (hanno la stessa carica). Dalla soluzione dell'equazione di Schroedinger si derivano gli orbitali atomici che sono qualitativamente simili agli orbitali dell'atomo di idrogeno; in questo caso, tuttavia, anche il numero quantico azimutale l concorre a determinare l'energia dell'elettrone nell'orbitale. Inoltre, nel caso di atomi con più di un elettrone è necessario introdurre un altro numero quantico per caratterizzare compiutamente un elettrone numero quantico di spin, ms ms= +1/2, -1/2 gli elettroni girano intorno al proprio asse secondo due possibili orientazioni principio di esclusione di Pauli: un orbitale contiene al massimo due elettroni ed essi hanno spin opposto

L’energia degli orbitali poliettronici Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE L’energia degli orbitali poliettronici Nel caso degli orbitali idrogenoidi anche il numero quantico azimutale l concorre a determinare l'energia dell'elettrone nell'orbitale. Lo schema corretto diventa lo schema di riempimento progressivo (che segue l’ordine crescente di energia degli orbitali) è pertanto: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p

Configurazione elettronica Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE Configurazione elettronica Ogni atomo è caratterizzato da una particolare disposizione degli elettroni nei suoi orbitali. La configurazione elettronica rappresenta tale disposizione ed è una specie di “carta di identità” dell’atomo. Si può attribuire la configurazione elettronica di ciascun elemento disponendo i suoi elettroni negli orbitali a disposizione in ordine crescente di energia (principio dell’Aufbau) ricordando: 1) Il principio di esclusione di Pauli: ciascun orbitale (definito dai tre numeri quantici n, l e ml) può contenere al massimo due elettroni (con spin opposto); 2) La regola di Hund: il riempimento di orbitali con la stessa energia (ad es. i 3 orbitali p) avviene ponendo un elettrone in ogni orbitale, tutti con spin parallelo. Eventuali altri elettroni vengono accoppiati solo se tutti gli orbitali di quel gruppo contengono almeno un elettrone. Es. L’atomo di elio ha due elettroni. Essi vanno ad occupare (nella loro confi-gurazione stabile) l’orbitale a più bassa energia, cioè l’orbitale 1s. L’orbitale 1s può “ospitare” due elettroni quindi entrambi gli elettroni dell’atomo di elio occupano l’orbitale con minore energia La configurazione elettronica dell’elio è 1s2

l’orbitale 1s che può ospitare al massimo 2 elettroni Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE Es. L’atomo di boro ha 5 elettroni. Essi vanno ad occupare (nella loro configuzione stabile) gli orbitali a più bassa energia, cioè l’orbitale 1s che può ospitare al massimo 2 elettroni l’orbitale 2s che può ospitare al massimo 2 elettroni gli orbitali 2p che possono ospitare al massimo 6 elettroni La configurazione elettronica del boro è 1s22s22p1 Es. L’atomo di neon ha 10 elettroni. Essi vanno ad occupare (nella loro configuzione stabile) gli orbitali a più bassa energia, cioè l’orbitale 1s che può ospitare al massimo 2 elettroni l’orbitale 2s che può ospitare al massimo 2 elettroni gli orbitali 2p che possono ospitare al massimo 6 elettroni La configurazione elettronica del neon è 1s22s22p6

La configurazione elettronica del sodio è 1s22s22p63s1 Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE Es. L’atomo di sodio ha 11 elettroni. Essi vanno ad occupare (nella loro configuzione stabile) gli orbitali a più bassa energia, cioè La configurazione elettronica del sodio è 1s22s22p63s1

Tratto da De Paoli Chimica Generale e Inorganica

Tavola periodica e configurazione elettronica degli elementi Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE Tavola periodica e configurazione elettronica degli elementi L’ordine con cui gli elementi compaiono della tavola periodica riflette la loro struttura elettronica: lungo un periodo (righe) si assiste al progessivo riempimento degli orbitali in base al loro contenuto energetico NB i periodi sono caratterizzati dallo stesso numero quantico principale n, ma anche il valore di l concorre a determinare il valore di energia assunto dall’elettrone in quegli orbitali (maggiore è il valore di l, maggiore è il contenuto energetico)  quindi 3s ha una energia inferiore al 3p gli elementi di un gruppo hanno la stessa configurazione elettronica “esterna” NB ciò conferisce agli elementi dello stesso gruppo un comportamento chimico simile poiché le proprietà chimiche risentono principalmente degli elettroni esterni

Tavola periodica in forma estesa Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE Tavola periodica in forma estesa (Z crescente) Ad ogni periodo è associato un valore di n; il numero di elementi per periodo corrisponde al numero di elettroni che può essere ospitato nel set di orbitali con quel numero quantico n. Il primo periodo ha solo due elementi perchè l’orbitale 1s può allocare solo due elettroni; il secondo periodo ha 8 elementi perché l’orbitale 2s alloca 2 elettroni e gli orbitali 2p allocano fino a 6 elettroni; il terzo periodo ha 8 elementi, perché gli orbitali 3d si riempono solo successivamente ecc.

Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE Blocco s Gli elementi del primo gruppo hanno la stessa configurazione esterna s1, cioè hanno un elettrone spaiato che occupa un orbitale s (metalli alcalini). Gli elementi del secondo gruppo hanno configurazione elettronica esterna s2, cioè hanno due elettroni nell’orbitale s (metalli alcalino-terrosi).

Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE Blocco p Sono gli elementi che si ottengono per riempimento degli orbitali p. Ad es. il gruppo degli alogeni (F, Cl, Br, I) con configurazione esterna s2p5) e il gruppo dei gas nobili (He, Ne, Ar, Kr, Xe, Rn) con configurazione esterna s2p6) progressivo riempimento degli orbitali p

Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE Blocco d Sono gli elementi che si ottengono per riempimento degli orbitali d. Sono tutti metalli e sono detti metalli di transizione. progressivo riempimento degli orbitali d

Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE Blocco f Sono gli elementi che si ottengono per riempimento degli orbitali f. Sono tutti metalli e sono detti terre rare (lantanidi e attinidi). progressivo riempimento degli orbitali f

Le proprietà periodiche degli elementi Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE Le proprietà periodiche degli elementi Alcune proprietà degli elementi sono caratterizzate da una variazione sistematica lungo il periodo oppure lungo il gruppo, proprio perché dipendono dalla configurazione elettronica (e in particolar modo dagli elettroni esterni). Raggio atomico e raggio degli ioni Il raggio atomico aumenta lungo un gruppo (perché aumenta il numero quantico principale e quindi la dimensione degli orbitali), diminuisce lungo un periodo (perché aumenta la carica positiva del nucleo e il numero di elettroni che occupano orbitali con lo stesso numero quantico principale poco efficienti nello schermare tale carica). gli ioni negativi sono sempre più grandi e gli ioni positivi sempre più piccoli dei relativi atomi neutri

Cs ha il PI più basso Potenziale di ionizzazione Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE Potenziale di ionizzazione Per strappare un elettrone ad un atomo è necessario fornire una certa quantità di energia. Tale energia è detta potenziale di ionizzazione. Quanto più è alto il potenziale di ionizzazione, tanto più sarà difficile strappare l’elettrone dall’atomo. Es. Na  Na+ + 1 e- PI = +492 kJ/mol Il potenziale di ionizzazione aumenta lungo un periodo e diminuisce lungo un gruppo Cs ha il PI più basso

F ha la AE più negativa Affinità elettronica Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE Affinità elettronica Alcuni atomi hanno una tendenza spiccata ad acquistare un elettrone. L’energia che viene liberata in questo processo è detta affinità elettronica. Quanto più è negativa l’affinità elettronica, tanto più sarà facile che l’atomo acquisti l’elettone. Es. Cl + 1 e-  Cl- AE=-394 kJ/mol L’affinità elettronica diminuisce lungo un periodo e aumenta lungo un gruppo F ha la AE più negativa