1 Lezione IX Avviare la presentazione col tasto “Invio”

Slides:



Advertisements
Presentazioni simili
Alberto Martini. m2m2 v1v1 m1m1 v1v1 m1m1 m2m2 v1v1 vogliamo risolvere un difficile problema! m1m1 m2m2.
Advertisements

Agenda di oggi Lavoro ed energia *Lavoro fatto da più forze costanti
Meccanica aprile 2011 Urti Conservazione della quantita` di moto e teorema dell’impulso Energia cinetica Urti elastici e anelastici Urto con corpi.
Esercizi sulla conservazione dell’energia
Urti e forze impulsive “Urto”: interazione che avviene in un tempo t molto breve (al limite infinitesimo) tra corpi che esercitano mutuamente forze molto.
Applicazione h Si consideri un punto materiale
Urti Si parla di urti quando due punti materiali (o due sistemi di punti materiali) si scambiano energia e quantità di moto in un tempo estremamente breve.
Centro di massa Consideriamo un sistema di due punti materiali di masse m1 e m2 che possono muoversi in una dimensione lungo un asse x x m1 m2 x1 x2 xc.
Le forze conservative g P2 P1 U= energia potenziale
Il lavoro [L]=[F][L]=[ML-2T -2] S.I.: 1 Joule = 1 m2 kg s-2
Un corpo di massa m= 0.5 kg, che si muove su di un piano orizzontale liscio con velocità v=0.5 m/s verso sinistra, colpisce una molla di costante elastica.
Una sfera di raggio r =1 m è poggiata su un piano orizzontale e mantenuta fissa. Un cubetto di piccole dimensioni è posto in equilibrio instabile sulla.
Lavoro di una forza costante
La quantità di moto La quantità di moto di un sistema di punti materiali si ottiene sommando le quantità di moto di ciascun punto materiale Ricordando.
Urto in una dimensione -Urto centrale
Urti Si parla di urti quando due punti materiali interagiscono per un intervallo di tempo estremamente breve. si possono sviluppare forze di intensità.
Il lavoro dipende dal percorso??
Il lavoro oppure [L]=[F][L]=[ML2T -2] S.I.: 1 Joule = 1 m2 kg s-2
G.M. - Edile A 2002/03 Appli cazio ne Si consideri un punto materiale –posto ad un altezza h dal suolo, –posto su un piano inclinato liscio di altezza.
G.M. - Informatica B-Automazione 2002/03 Estensione della conservazione dellenergia ai sistemi di punti materiali Se tutte le forze interne ed esterne.
Lezione 5 Dinamica del punto
La conservazione della quantità di moto
LAVORO di una forza costante
Primo principio della termodinamica
NEL CAMPO GRAVITAZIONALE
Parte IV: Dinamica del Punto 2a parte
Corso di Fisica - Lavoro ed energia
Descrizione geometrica del moto
GLI URTI IN UNA DIMENSIONE
Energia potenziale energia cinetica energia elastica energia di dissipazione urto elastico urto anelastico.
Meccanica 8. L’energia (I).
Esempio -1 Individuare il centro di massa di un sistema di tre particelle di massa m1 = 1kg, m2 = 2 kg, e m3 = 3kg, poste ai vertici di un triangolo.
Esempio 1 Un blocco di massa m scivola lungo una superficie curva priva di attrito come in figura. In ogni istante, la forza normale N risulta perpendicolare.
Urti fra particelle 1. Quando due particelle si urtano, agisce su di esse una forza molto grande per un intervallo di tempo molto breve: durante il tempo.
La Legge di conservazione dell’energia
1 Come abbiamo preannunciato ieri, consideriamo alcuni semplici esperimenti, il cui esito è prevedibile in base alla nostra esperienza quotidiana (e non.
Riepilogo della parte di programma oggetto della prova parziale 1.
Lavoro ed Energia.
Esempio 1 Una palla avente una massa di 100 gr viene colpita da una mazza mentre vola orizzontalmente ad una velocità di 30 m/s. Dopo l’urto la palla.
Relatore prof. re CATELLO INGENITO
FORZE CONSERVATIVE E DISSIPATIVE
(descrizione quantitativa del moto dei corpi)
Esercizi (attrito trascurabile)
E n e r g i a.
ENERGIA POTENZIALE Il lavoro compiuto da una forza è definito dalla relazione e nel caso della forza di attrito dinamico il suo valore dipende dalla lunghezza.
© Nichi D'Amico1 Lezione I Avviare la presentazione col tasto “Invio”
1 Lezione V – seconda parte Avviare la presentazione col tasto “Invio”
1 Lezione VIII seconda parte Avviare la presentazione col tasto “Invio”
1 Lezione VII Avviare la presentazione col tasto “Invio”
1 Lezione IX seconda parte Avviare la presentazione col tasto “Invio”
1 Lezione XIII – terza parte Avviare la presentazione col tasto “Invio”
© Nichi D'Amico1 Lezione II – terza parte Avviare la presentazione col tasto “Invio”
1 Lezione VI – seconda parte Avviare la presentazione col tasto “Invio”
1 Lezione XIV -c Avviare la presentazione col tasto “Invio”
1 Lezione XII Avviare la presentazione col tasto “Invio”
1 Lezione IX – quarta parte Avviare la presentazione col tasto “Invio”
1 Lezione XV-a Avviare la presentazione col tasto “Invio”
1 Lezione VI Avviare la presentazione col tasto “Invio”
1 Lezione IX – terza parte Avviare la presentazione col tasto “Invio”
Avviare la presentazione col tasto “Invio”
Prof.ssa Veronica Matteo
Conservazione della quantità di moto totale La legge e le sue applicazioni.
LAVORO E ENERGIA. LAVORO Il lavoro prodotto da una forza F su un corpo, è dato dal prodotto tra la componente della forza Fs, lungo lo spostamento e lo.
Conservazione dell’Energia Pallina, la nostra mascotte.
Avviare la presentazione col tasto “Invio”
Transcript della presentazione:

1 Lezione IX Avviare la presentazione col tasto “Invio”

Faremo un riepilogo degli argomenti trattati fino adesso, e lo faremo andando a ritroso, cioè partendo dagli argomenti più recenti Riepilogo I 2

Un caso esemplificativo di tutto quello che abbiamo imparato può prendere spunto da esperimenti del genere: Una biglia in moto m 1 colpisce una biglia ferma m 2 : l’urto può essere: Elastico: P = costante; K = costante  due incognite ( v 1 e v 2 ), due equazioni ( P e K ) Anelastico: P = costante; K = diminuisce  due incognite ( v 1 e v 2 ), una equazione ( P ) Completamente anelastico: P = costante; K = diminuisce; v 1 = v 2  una incognita una equazione ( P ) ? 3

Potremmo complicare il problema… per esempio nel caso elastico potremmo immaginare una cosa del genere: E saremmo in grado di calcolare la deformazione x della molla! ΔK = −ΔU ΔU = ½ kx 2 4

Oppure, sempre nel caso elastico potremmo immaginare una cosa del genere: E saremmo in grado di calcolare l’altezza h raggiunta dalla biglia bersaglio! ΔK = −ΔU ΔU = mgh h 5

Se invece l’urto è anelastico, se ci viene indicata come dato del problema l’altezza a cui arriva la biglia bersaglio, o di quanto comprime la molla, allora potremo calcolare quanta energia potenziale ΔU acquisisce, ricavare l’energia cinetica acquisita con l’urto dalla biglia bersaglio dalla relazione: ΔK m2 = −ΔU potremmo paragonare ΔK m2 all’energia cinetica inziale del sistema (cioè quella della biglia incidente), calcolare di quanto è diminuita l’energia cinetica del sistema e cioè l’entità della dissipazione termica ? 6

Se poi l’urto è completamente anelastico, poiché l’incognita è una sola e cioè la velocità finale delle due biglie attaccate, con la sola conservazione della quantità di moto siamo in grado di determinare questa velocità e quindi l’energia cinetica delle due biglie attaccate: K = ½ (m 1 + m 2 ) v 2 e siamo pertanto di nuovo In grado di determinare la compressione della molla o l’altezza raggiunta sul piano inclinato 7

Ma le cose potrebbero essere un po’ più complicate: per esempio il piano inclinato su cui si arrampica la biglia bersaglio potrebbe essere dotato di attrito! In questo caso, il lavoro esercitato dalla biglia nella sua risalita, sarà in parte trasformato in energia potenziale ΔU = mgh ma in parte sarà dissipato in lavoro fatto contro la forza d’attrito ΔL = F d Quindi se avevamo calcolato che l’energia cinetica acquisita dalla biglia bersaglio nell’urto elastico era ΔK dovremo tenere in conto che quando la biglia si ferma sul piano inclinato, ΔK si è trasformata in mgh + F d 8

Conservazione della quantità di moto e urti p = mv La quantità di moto di un sistema isolato si conserva La variazione di quantità di moto è pari all’impulso ricevuto dall’esterno J = F (t) dt  = Δp ∫ t1t1 t2t2 F(t)F(t) t t2t2 t1t1 ΔtΔt Δp 9

L’applicazione della sola conservazione della quantità di moto negli urti non ci permette in generale di prevedere l’esito dell’urto, a meno che questo non sia completamente anelastico (una sola velocità finale in quanto i corpi rimangono attaccati). 10

m1m1 m2m2 Prima dell’urto (velocità u ) Dopo l’urto (velocità v ) velocità = u 1 velocità = v 1 velocita = u 2 velocità = v 2 11

12 In questo caso, noti i dati iniziali m 1, u 1,m 2 e u 2 applicando la sola conservazione della quantità di moto possiamo scrivere una sola equazione avendo però due incognite v 1 e v 2 m 1 u 1 + m 2 u 2 = m 1 v 1 + m 2 v 2 cioè in base alla sola conservazione della quantità di moto l’esito dell’urto non è univocamente determinato

13 Applicando però congiuntamente anche la conservazione dell’energia cinetica (urti elastici) si ha una soluzione univoca per le due velocità

m 1 ≥ m 2 Una biglia incidente su una biglia bersaglio ferma: a)si ferma solo se ha rigorosamente la stessa massa della biglia bersaglio b)prosegue alla sua stessa velocità solo se è MOLTO più massiva della biglia bersaglio c)se ha una massa intermedia manterrà una certa velocità inferiore a quella iniziale 14

m 1 ≤ m 2 Una biglia incidente su una biglia bersaglio ferma: a)si ferma solo se ha la stessa massa della biglia bersaglio b)Rimbalza indietro con la sua stessa velocità cambiata di segno solo se è MOLTO più leggera della biglia bersaglio c)se ha una massa intermedia avrà un lieve rimbalzo ma non sarà del tutto ferma 15

Energia potenziale 16

Poiché come abbiamo visto il lavoro fatto/ricevuto da una forza conservativa su/da di una particella dipende soltanto dal punto di partenza e da punto di arrivo. E poiché nel caso di forze conservative il lavoro fatto dalla/sulla particella sulla/dalla forza (a scapito o ad arricchimento della sua energia cinetica) può essere interamente restituito o riscambiato, ne consegue che una tale forza può dipendere solo dalla posizione della particella, e non per esempio dal tempo, o dalla velocità della particella. Per esempio se la forza dipendesse dal tempo, adottando fra i due punti A e B un percorso che ci fa impiegare più tempo, il lavoro risulterebbe differente rispetto a quello risultante per un percorso che ci fa impiegare meno tempo. Il che abbiamo visto che non è il caso. 17

Consideriamo il caso di un percorso rettilineo di una massa m. Il lavoro fatto dalla risultante F delle forze applicate alla massa in questione è uguale alla variazione di energia cinetica della massa m L = Fdx = ½ mv 2 − ½ mv 0 2 ∫ x0x0 x In queste condizioni stabiliremo che ogni variazione dell’energia di movimento, l’energia cinetica, lungo il percorso, è associata ad una variazione di segno opposto dell’energia di posizione, l’energia potenziale. Cioè abbiamo sintetizzato questa proprietà delle forze conservative di restituire energia In funzione della posizione associando alla posizione una energia potenziale. 18

Rappresentando con U l’energia potenziale, questo enunciato risulta espresso dalla formula ΔK = −ΔU In base al teorema lavoro-energia che abbiamo appena riscritto, la variazione di energia cinetica vale: ΔK = F(x)dx da cui ne segue che: ΔU = − F(x)dx Questa quantità è funzione soltanto della posizione ∫ x0x0 x ∫ x0x0 x 19

In sostanza, abbiamo ricavato la Legge di Conservazione dell’Energia Meccanica (cinetica + potenziale): E = U + K di cui avevamo intuito fin dalla prima lezione l’esistenza. Energia potenziale U Energia cinetica K Energia Meccanica E 20

21 I due esempi classici di sistemi conservativi unidimensionali Due esempi classici di forze conservative sono la forza di gravità e la forza di richiamo di una molla Nel caso della forza di gravità, il moto unidimensionale è verticale. Assumendo l’asse positivo delle y diretto verso l’alto, la forza di gravità risulta diretta secondo il verso negativo delle y. Si ha quindi: F = −mg = costante (che rappresenta un caso particolare di una forza dipendente dalla posizione). Per l’energia potenziale potremo scrivere pertanto: U(y) – U(0) = (−mg) dy = mgy Il caso della forza di gravità = Fdy ∫ y 0 ∫ y 0 Adottando un energia potenziale nulla per y = 0, si ha semplicemente: U (y) = m g y

22 Il fatto che l’energia potenziale di una massa m ad una certa altezza dal suolo cresca con l’altezza è certamente coerente con la nostra esperienza quotidiana: Maggiore è l’altezza h dalla quale lasciamo cadere una massa m, maggiore è la velocità (e quindi l’energia cinetica) con cui arriva al suolo.

23 Il caso della forza di una molla Consideriamo la forza esercitata da una molla elastica su di una massa m che si muove su di una superficie orizzontale (priva di attrito), e consideriamo il punto x 0 = 0 come posizione di equilibrio della molla. La forza F esercitata sulla massa m quando la deformazione è x vale F = −k x dove k è la costante elastica della molla L’energia potenziale è data dalla formula: U(x) − U(0) = (−kx) dx Se scegliamo U(0) = 0, l’energia potenziale, come pure la forza, è nulla nella posizione di riposo della molla e risulta: U(x) − U(0) = (−kx) dx = ½ kx 2 (metodo grafico delle aree) ∫ x 0 ∫ x 0

24 Una importante affermazione, che fino adesso non è stata mai contraddetta dai risultati sperimentali è la seguente: L’energia totale di un sistema, come risulta dalla somma dell’energia cinetica, dell’energia potenziale, dell’energia termica e di altre forme di energia, non cambia

25 Alcune considerazioni: Abbiamo iniziato l’approccio alla conservazione dell’energia parlando della conservazione dell’energia meccanica K+U. Poi abbiamo scoperto che l’energia meccanica si conserva solo nel caso di forze conservative. Per esempio nel caso di forze d’attrito, l’energia meccanica non si conserva ma viene dissipata in energia termica Adesso abbiamo affermato che l’energia totale di un sistema, come risulta dalla somma dell’energia cinetica, dell’energia potenziale, dell’energia termica e di altre forme di energia, non cambia

26 Sembra quasi che si voglia rincorre assolutamente un teorema (la conservazione dell’energia, appunto) invocando eventuali altre forme di energia, laddove apparentemente l’energia non si sarebbe conservata. Di fatto è l’esperienza che ci conferma la veridicità del teorema.