Le teorie manageriali dell’impresa

Slides:



Advertisements
Presentazioni simili
Lelasticità e le sue applicazioni Capitolo 5.. Harcourt, Inc. items and derived items copyright © 2001 by Harcourt, Inc. Lelasticità è: quanto u la misura.
Advertisements

Pensare da economista Capitolo 2.
La concorrenza perfetta Capitolo 14. Harcourt, Inc. items and derived items copyright © 2001 by Harcourt, Inc. Caratteristiche del mercato u Molteplicità
Lefficienza del mercato Capitolo 7. Harcourt, Inc. items and derived items copyright © 2001 by Harcourt, Inc. Economia del benessere Studia in che modo.
Domanda e offerta: come opera il mercato Capitolo 4.
Monopolio Capitolo15. Harcourt, Inc. items and derived items copyright © 2001 by Harcourt, Inc. Monopolio u Una sola impresa sul mercato u Assenza di.
I metodi di valutazione alternativi al Valore Attuale Netto Teoria della Finanza Aziendale Prof. Arturo Capasso A.A
e le strategie di posizionamento
Scuola di Dottorato della Facoltà di Scienze MM. FF. NN., Università di Milano Bicocca ELEMENTI DI ORGANIZZAZIONE AZIENDALE Funzione finanza e controllo:
Ricerca di una chiave: Search(x, k) if x == nil or k == x.key return x
1 I 4 quadrati B A D C Osservate bene questo diagramma Seguiranno 4 domande riguardo a questi quadrati. Pronti ?
Le Trasformazioni Chimiche
I modelli reticolari Rappresentano graficamente le procedure attraverso nodi e linee; 2. Ogni linea rappresenta unattività; 3. Su ogni linea è riportato.
La scuola come impresa sociale: responsabilità e rendicontazione
LOFFERTA DI MONETA Le BANCHE CENTRALI 1PROF.COLUCCI DONATO.
Biologia a.s Biorisanamento di Castelli Enrico 2i.
GE.CO. Gestione per competenze. Introduzione a GE.CO. Orienta nella scelta di nuovi modelli organizzativi. Elabora modelli concettuali ed operativi. Introduce.
JavaScript Lezione 5 Tipizzazione ed operazioni tra tipi diversi Istruzioni di input.
Lequilibrio dei mercati finanziari Istituzioni di Economia Politica II.
Enya Franceschini 3^C RIM
una generalizzazione del Modello Media-Varianza
I paesi e il territorio: turismo culturale, crescita della comunità ed economia identitaria Il paese e il territorio: Recite II - Learning Sustainability.
INNOVAZIONE NELLA SCUOLA E T.I.C.
Telemarketing & Market Research Advanced on Line Business Oriented Research Solutions ALBORS.
Italo fiorin- UNA RIVOLUZIONE COPERNICANA Lautonomia più che una riforma può essere considerata una rivoluzione. Il sistema.
La Gestione Speciale STRATEGIA VALORE e i nuovi prodotti vita 2008.
TOLOMEO.
Giuseppe De Arcangelis © 20121Economia Internazionale Equilibrio macroeconomico e politiche di stabilizzazione del reddito.
Presenta lanalisi al Bilancio 2012 di Cattolica Assicurazioni.
MANAGEMENT PARTE B a.a. 2012/2013 Docente: Prof.ssa Enrica Pavione
IL MODO MIGLIORE PER INCREMENTARE IL TUO BUSINESS.
Struttura Aziendale Arianna Montervino 4° A T.G.A A.S 2009/2010 Stage.
"Ricerca-azione triennale sugli OBIETTIVI di SVILUPPO del MILLENNIO condotta attraverso le ICT nella scuola secondaria di II grado" Ipsia Carlo Cattaneo.
# Tre di Picche Marketing Ruolo del marketing
L’azienda prima dell’intervento:
POINT BREAKBREAK EVENTEVENT Prof. Pietro Samarelli.
I.S.F.I I nternational S chool F ashion & I ndustry CAMPUS S. PELLEGRINO - Misano (RN) Italy.
Modulo 4A Analisi Performance Vendite Auto
DIREZIONE COMMERCIALE DIREZIONE COMMERCIALE LARTE DELLESPANSIONE IN UN MERCATO IN EVOLUZIONE.
Investimenti nell ex-DDR: una grande opportunità di diversificazione.
Mappa concettuale di sintesi
PER UNA CRITICA DELLE TEORIE ECONOMICHE NEOCLASSICHE DOMINANTI Maggio
Prof. Cerulli – Dott.ssa Gentili
1 Target Cross Intelligence Le decisioni d'impresa, spesso, non sono né giuste né sbagliate. Le decisioni d'impresa, spesso, non sono né giuste né sbagliate.
Tableau de bord Cruscotto di direzione
Relazione di: Rosario Maugeri Francesca Marcellino Oriana Guerreri
Assemblea degli azionisti della S.G. spa Report sui risultati ottenuti nel triennio Premessa Gli indicatori economici Il rendimento del capitale.
DSS Identità oggetto Contenuto Modalità di uso Nome oggetto: numero
Piattaforma educativa per micro e nanotecnologie ideata per scuole medie, professionali e istituti tecnici Il Lotuseffekt®
Dr.ssa Michela Floris Oristano, 7 Giugno Programma per la giornata Visione di un video del Prof. Bernardo Bertoldi dellUniversità di Torino Identificazione.
Dr.ssa Michela Floris Oristano, 18 Giugno Programma per la serata Visione di un video del Dr. Attanzio, direttore generale dellAIDAF Identificazione.
Perché insegnare statistica a scuola Utilità della Statistica 1.è a fondamento della crescita democratica di un nazione moderna 2.è essenziale per monitorare.
Francesco Cirillo Gianluca Fiore Reparti: Reparto Elettronica Consolle Reparto audio e video Impianto stereo Computer: informatica Video games Telefonini.
Unità 1 La Funzione di Marketing
Gli indici di bilancio di Valentina Grison.
LAVORO ED ENERGIA L’energia è la capacità di un sistema di compiere lavoro In natura esistono diverse forme di energia e ognuna di esse si trasforma continuamente.
MATCHING THEORY Una teoria per il Nobel.
Introduzione 1 Il Decreto Legislativo 626/94 prescrive le misure finalizzate alla tutela della salute e alla sicurezza dei lavoratori negli ambienti di.
NOVITÀ IN MATERIA DI LAVORO ultimi interventi normativi MASSA CARRARA, 2 dicembre 2013 Direzione Relazioni Industriali.
IL LAVORO Art. 1 Costituzione Italiana
Istituzioni di Economia Politica II
Contratti impliciti e salari di efficienza
Biblioteca Lazzerini - Prato 19 novembre 2012 Migranti e biblioteche pubbliche: fra nuovi soggetti, pratiche di lettura e strategie di servizio Seconde.
ICF e Politiche del Lavoro
Giancarlo Colferai - CEPAS
Auto-valutazione dell’istituzione scolastica; concetti di base
Sistemi sanitari europei, speranza di vita alla nascita e sopravvivenza per tumore Sistemi sanitari europei, speranza di vita alla nascita e sopravvivenza.
Calibrating (Partial Equilibrium) Mathematical Programming Spatial Models Open questions … (filippo arfini) III Workshop PUE&PIEC - Treia (Mc), 3-4 febbraio.
Pippo.
© 2014 IBM Corporation Il mercato del Cloud Computing in Italia Bianca Serioli 8 luglio 2014.
Transcript della presentazione:

Le teorie manageriali dell’impresa C.dL.M. in Economia e Management A.a. 2012/2013 Docente: DOMENICO SARNO 3^ settimana

Contenuti Il punto di partenza delle teorie manageriali Il modello di Baumol Il modello di Williamson Il modello di Marris Discussione

1. Il punto di partenza delle teorie manageriali “Teorie manageriali”: insieme di lavori apparsi negli anni 1960 – 1970 Un doppio punto in comune Rifiuto delle ipotesi neo-classiche sull’impresa (come Coase & Williamson) Enfasi sul ruolo del management Particolarità delle teorie manageriali Modelli basati sull’utilità manageriale

Una critica delle teorie neoclassiche Insoddisfazione con l’ipotesi centrale della teoria neoclassica riguardo all’impresa: la massimizzazione del profitto Perché? Tale ipotesi richiede condizioni molto stringenti Il profitto deve essere un’ entità certa e misurabile L’impresa deve essere un’ unità indivisibile (che prende decisioni) La funzione di utilità dell’impresa contiene solo il profitto Razionalità perfetta degli agenti Informazione completa Queste condizioni non si verificano nella realtà Invece esistono grandi imprese con potere di mercato e complessità organizzative

Complessità e ruolo del management Caratteristiche delle imprese industriali Grandi dimensioni Diversificazione produttiva Complessità organizzativa Separazione tra proprietà e gestione Queste caratteristiche spiegano la centralità del management nel processo decisionale … … E la sua autonomia rispetto ai proprietari

Separazione tra proprietà e controllo In particolare, già nel lavoro di Berle &Means «The Modern Corporation and Private Property», 1932, viene analizzata questa separazione tra proprietà e controllo Tesi: l’emergenza della corporation distrugge l’unità della proprietà privata Conseguenza: separazione tra proprietà e controllo Dispersione della proprietà Controllo effettivo dei manager Queste premesse teoriche e osservazioni empiriche portano alcuni economisti a proporre una visione alternativa dell’impresa, fondata su alcune ipotesi centrali.

Due ipotesi centrali I manager non cercano di massimizzare il profitto, ma la loro utilità L’utilità manageriale comprende (secondo Marris, 1964) Reddito (retroibuzione) Posizione sociale (prestigio) Potere Sicurezza (del posto di lavoro) Altre motivazioni (avventura, creatività, competitività, ecc.) Esiste una relazione diretta e significativa tra l’utilità dei managers, da una parte, e la dimensione, il profitto e la crescita delle imprese, dall’altra

2. Il modello di Baumol William J. Baumol (1922 - ) Business Behaviour, Value and Growth pubblicato nel 1959 Ipotesi di partenza: il comportamento dell’impresa dipende dal confronto tra due funzioni di utilità Utilità manageriale = massimizzazione delle vendite I manager utilizzano i profitti eccedenti quelli minimi per aumentare la domanda (marketing e pubblicità)

Modello di Baumol: 1. Utilità manageriale e vincolo di profitto Per potere raggiungere i loro obiettivi, i manager devono corrispondere alle aspettative di reddito dei proprietari, i quali hanno una funzione di utilità che dipende dal profitto UP = UP (π) La funzione di utilità dei manager diventa

Modello di Baumol: 2. soluzione grafica CT RT,CT,π π quando si max profitto RT π quando si max vendite π atteso πmin2 π atteso πmin1 qπ qs1 qs π q

Modello di Baumol: 3. statica comparata L’analisi di statica comparata ha mostrato che: L’impresa di B., a differenza di quella neoclassica, non minimizza i costi di produzione (se il profitto garantito è sufficientemente basso, il manager può remunerare adeguatamente la proprietà e massimizzare i ricavi); L’aumento delle imposte sul profitto, che nel caso dell’impresa neoclassica non determinano alcun cambiamento, nel caso dell’impresa di B. modificano il vincolo nel caso in cui esso sia espresso in termini di profitto netto e non lo modificano quando è espresso in termini di profitto lordo; L’introduzione di un sussidio sul lavoro, che nel caso dell’impresa neoclassica comporta un aumento di produzione ed occupazione, nell’impresa di B. comporta soltanto un aumento del profitto e nessun incremento di produzione ed occupazione.

Gli sviluppi proposti da Yarrow George Yarrow – On the Prediction of the Managerial Theory of the Firm, 1976 Nel modello viene proposto una trattazione del rapporto tra proprietà e management più articolata. Si assume che la proprietà abbia come obiettivo la massimizzazione del valore di mercato dell’impresa (piuttosto che il profitto) Senza perdere di generalità, il valore di mercato dell’impresa può essere scritto come funzione di un vettore di variabili rilevanti (z) [valore attuale dei flussi di reddito, tasso di interesse, tasso di sconto, ecc.] e della dimensione dell’impresa (y), cioè V(z,y) Se si assume che z sia costante, allora il valore di mercato dell’impresa è funzione della dimensione. In particolare, si ipotizza che il valore di mercato dell’impresa sia crescente fino ad una dimensione y* e decrescente per livelli superiori.

Il modello di Yarrow L’utilità del manager è funzione crescente della dimensione U(y) con U’>0 e il manager sa che dimensioni maggiori di y* deprimono il valore di mercato dell’impresa e che ciò può indurre gli azionisti a vendere le azioni e favorire l’acquisizione dell’impresa. Si può, perciò, ipotizzare che vi sia per la proprietà un costo fisso di controllo C, noto ai manager. Allora formalmente il modello può essere rappresentato con Max UM = UM (RT) s.to V(y) ≥ V(y*) - C dove V(y) è il valore effettivo dell’azione e V(y*)è la valutazione massima

Il modello di Yarrow: soluzione grafica V(y) V(y*) V(y*) - C C y* yeff y

3. Il modello di Williamson Oliver E. Williamson, Managerial Discretion and Business Behaviour, 1963 Ipotesi di partenza: La discrezione manageriale ha un impatto sull’allocazione delle risorse all’interno dell’impresa Manager motivati da: Reddito, sicurezza, potere, prestigio, eccellenza professionale Legame tra motivazioni e comportamento? E’ difficile integrare delle motivazioni qualitative in modelli quantitativi del processo decisionale

“Preferenza di spesa” e comportamento dei managers Soluzione: “expense preferences” dei manager Cioè: i manager non sono neutrali nei confronti dei costi Hanno delle preferenze di spesa Alcune spese sono direttamente connesse agli obiettivi dei manager (le loro motivazioni) Quale spese? Staff Emolumenti (fringe benefits, budget uffici, ecc.) Investimenti discrezionali

Il modello, 1: le identità di base

πmax – πeff = S

Il modello, 2: le ipotesi Il modello può essere rappresentato come segue: Max U = U [ S, M, I ] s.to πdich ≥ πmin + T Si deve notare che I = πdich - πmin - T per cui vincolo e variabile I (investimenti discrezionali) sono uguali. Allora la funzione obiettivo diventa Max U = U [ S, M, πdich - πmin- T ] Il profitto discrezionale può essere scritto anche come πdich - πmin- T = (1-t) [ RT(Q)-CT(Q)-S-M ]

Il modello, 3: il risultato Allora, si ha Max U = U { S, M, (1-t) [RT(Q)-CT(Q)-S-M] } rispetto a Q, S, M Le condizioni di primo ordine indicano che L’impresa sceglie l’output per cui il ricavo marginale è uguale al costo marginale l’impresa impiega staff laddove la sua produttività marginale è minore del suo costo marginale l’impresa assorbirà una certa quantità di profitti effettivi sotto forma di emolumenti

Il modello, 4. statica comparata W. confronta i risultati ottenuti con quelli proposti dal modello tradizionale di massimizzazione del profitto, verificando gli effetti rispetto 1. Aumento della domanda aumentano output e spese di staff in entrambi in W. si riduce il rapporto tra πdich e πeff perché aumenta M 2. Aumento delle imposte sui profitti penalizza I a vantaggio di S 3. Aumento delle imposte fisse Innalza il vincolo di profitto lordo comprimendo M e S In ogni caso il modello di W. appare più realistico di quello centrato sulla massimizzazione del profitto.

4. Il modello di Marris Si compone di tre parti: Robin Marris (1924-2012), The Economic Theory of Managerial Capitalism, 1964 Propone un modello che spiega le relazioni tra comportamento dei manager, vincoli esterni e crescita dell’impresa Si compone di tre parti: Un modello relativo alla crescita dell’impresa e agli obiettivi dei manager Un modello relativo al modo in cui opera il mercato azionario Una teoria delle scalate e della minaccia che esse rappresentano per la sicurezza dei manager E’ un modello a crescita uniforme e viene sviluppato nel contesto teorico che fa proprie le conclusioni prodotte dalla letteratura precedente (in particolare, Penrose), secondo cui la crescita dell’impresa è soggetta a vincoli.

Un modello di crescita dell’impresa Tre vincoli valgono, in particolare: vincolo di domanda - considera le condizioni necessarie perché cresca la domanda relativamente a: caratteristiche dei consumatori, struttura e dinamica dei mercati (entrata di nuove imprese, reazioni dei concorrenti, ecc.) vincolo manageriale – considera il fatto che la crescita dimensionale richiede l’acquisizione di ulteriori capacità manageriali e ciò comporta rendimenti decrescenti (effetto Penrose) vincolo finanziario – considera le fonti che garantiscono il finanziamento degli investimenti necessari per adeguare la capacità produttiva dell’impresa Inoltre, si deve tener conto della funzione di utilità del management e dei suoi obiettivi

Crescita della domanda e diversificazione Punto di partenza: equilibrio tra tasso di crescita della domanda e tasso di crescita dell’offerta Ipotesi: la crescita della domanda (gD) dipende dal tasso di (crescita della) diversificazione (di) (1) gD= f1 (di) con f1’>0 Un insieme di ragioni giustificano una relazione inversa tra i processi di diversificazione (di) e il tasso di rendimento del capitale (r=π/K), cioè (2) di = f2 (r) con f’2<0 Di conseguenza, gD = f1 [f2 (r)], ovvero (3) gD = f3 (r) con f’3<0

Crescita dell’offerta; gli investimenti Il tasso di crescita dell’offerta (gs) è uguale agli investimenti (I). Se si suppone che il rapporto capitale/prodotto sia costante, allora (4) gs = I/K Poniamoci il problema del finanziamento degli investimenti. Le fonti finanziarie sono: Profitti non distribuiti (autofinanziamento) Risorse creditizie esterne Aumento di capitale Per semplicità si suppone che gli investimenti vengono finanziati con risorse interne

Equilibrio tra crescita dell’offerta e crescita della domanda Se α è la frazione di profitti non distribuiti, con (4) πRITEN= α πTOT e αmin < α < αmax Poiché I=απ, si può scrivere: (5) gs = απ/K = αr In equilibrio gD=gs di modo che (6) gD = f3 (r) = αr = gs La soluzione di equilibrio di r dipende dal valore attribuito a α.

r = (gD) con  (= f3-1)<0 Graficamente … Si può proporre una soluzione grafica considerando la funzione inversa del tasso di crescita della domanda r = (gD) con  (= f3-1)<0 E possiamo riscrivere la crescita dell’offerta r = 1/α gS In equilibrio gD=gS= g per cui (g)= 1/α g

(g) r 1/αmin V 1/α* rmax r>r* .A .B r* r<r* .B .A 1/αmax rmin P g O gs gd gd gs gmin g* gmax

r r*’ r* r*’’ g g*’ g* 1/α g*’’ 1/α’ (α’<α) 1/α’’ (α’’>α) (1/α)g

Utilità dei manager L’utilità dei manager dipende da due elementi La crescita dimensionale dell’impresa (associata positivamente alle motivazioni dei manager elencate prima) La sicurezza del posto del lavoro (che dipende dal rapporto di valutazione) La funzione di utilità può essere scritta come U(g, V) Il rapporto di valutazione (V) è uguale al rapporto tra il valore di mercato dell’impresa (M) e il valore di bilancio (K)

Valutazione dell’impresa Ipotizzando mercati finanziari perfetti, il valore di mercato (M) è uguale al flusso attualizzato dei dividendi correnti e futuri, cioè Se tutti i profitti fossero distribuiti, allora Invece, se si ipotizza che una quota costante (α) viene trattenuta, allora si può scrivere

Quindi il rapporto di valutazione diventa dove K0 è il valore delle attività iscritto in bilancio

Valore delle azioni Se assumiamo che il valore corrente di un’azione sia uguale al valore attuale dei dividendi correnti e futuri più la somma derivante da un’eventuale vendita, il prezzo corrente di ciascuna azione diventa S0= valore attuale dell’azione Si= prezzo dell’azione al periodo I K0= capitale investito nel periodo iniziale πe= tasso di profitto atteso α= quota dei profitti trattenuti dall’impresa N= numero di azioni g = tasso di crescita δ = tasso di sconto

Poiché il prezzo dell’azione cresce allo stesso tasso g, Si = (1+g) S0 Allora Riordinando i termini e supponendo che δ>g (il prezzo sarebbe altrimenti infinito), si ha

Raggruppando i termini e semplificando Il valore complessivo della società è Il rapporto di valutazione è allora che dipende positivamente da π e g e negativamente da α e δ

Scalata Quando V<1 ogni investitore avrà convenienza ad acquistare azioni, poiché il valore di mercato è inferiore al valore effettivo. Si potrebbe avere una scalata; questo mette in discussione la sicurezza dei manager In questo caso, i dividendi devono aumentare, ma ciò significa che diminuiscono i profitti non distribuiti e la crescita. Quindi tra il rapporto di valutazione (V) e la crescita (g) esiste una relazione inversa Il modello completo può essere rappresentato come

Soluzione grafica V (1/α) g U(g,V) V* V0 U’’ U U’ φ(g) 1/α* g* g

Esercizio: modello di Baumol Funzione di domanda (inversa) P=100-2y Funzione dei costi C(y) = 20y Vincolo di profitto πo=500 Problema Max RT s.to π=π0 RT= Py=(100-2y)y= 100y -2y2 Condizione del primo ordine ∂RT/∂y=R’=100-4y=0 Condizione del secondo ordine ∂2RT/∂y2=R”=-4<0 Condizione di massimizzazione dei ricavi totali 100-4y=0, y=100/4=25 Profitto per y=25, RT(y)-CT(y) = 100y -2y2- 20y = 80y - 2y2= = 100(25)-2(25)2 – 20(25)= 2500-1250-500= = 750

Esercizio (continua) Che succede se πo=800 Si calcoli il profitto massimo, analizzando la funzione del profitto π=80y - 2y2 Il profitto è massimo quando ∂π/∂y= π’=80-4y=0, cioè quando y=80/4=20 In questo caso il profitto massimo è π max= 80(20)-2(20)2=1600-800= 800 e quindi la quantità che garantisce il profitto atteso dagli azionisti è esattamente quella che garantisce il massimo profitto.

Esercizio: modello di Yarrow Valore di mercato dell’impresa V(y)=800y –y2 Costo fisso di controllo C=40,000 Funzione di utilità del manager U(y) con U’>0 Il manager risolve il problema Max U=U(y) s.to V(y)≥ V*-C Per determinare V*, ∂V(y)/∂y=V’=800-2y=0 dopo aver verificato che ∂2V/∂y2=V”=-2<0 si ha y=800/2=400 Quindi V*=800(400)-(400)2=320,000-160,000=160,000

Esercizio (continua) Per determinare il livello di produzione si consideri esclusivamente il vincolo, V(y)≥ V*-C, che diventa, 800y-y2-(160,000-40,000)=y2-800y+120,000 Si calcolino le due radici sulla base della formula −𝑏± 𝑏 2 −4𝑎𝑐 2𝑎 = 800± 800 2 −4(120,000) 2 = 800± 640,000−480,000 2 = = 800± 160,000 2 = 800±400 2 Le due soluzioni sono y1=600 e y2=200 e il manager sceglie il livello più alto y=600.