1 Lezione IX – terza parte Avviare la presentazione col tasto “Invio”

Slides:



Advertisements
Presentazioni simili
LA DESCRIZIONE DEL MOTO
Advertisements

CINEMATICA SINTESI E APPUNTI.
Fisica 2 1° lezione, parte a
Meccanica 2 1 marzo 2011 Cinematica in una dimensione
Meccanica 5 31 marzo 2011 Lavoro. Principio di sovrapposizione
I VETTORI di Federico Barbarossa
ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA
Dinamica del punto Argomenti della lezione
Interrigi Denise Sonia
I vettori Grandezze scalari: Grandezze vettoriali
Un corpo di massa m= 0.5 kg, che si muove su di un piano orizzontale liscio con velocità v=0.5 m/s verso sinistra, colpisce una molla di costante elastica.
I vettori Grandezze scalari: vengono definite dal loro valore numerico esempi: lunghezza di un segmento, area di una figura piana, temperatura di un corpo,
Sistema di riferimento su una retta
Consigli per la risoluzione dei problemi
Dinamica del punto materiale
Le cause del moto: la situazione prima di Galilei e di Newton
Il prodotto vettoriale
Grandezze scalari e vettoriali
LO STRATO DI EKMAN Corso: Idrodinamica delle Grandi Masse
Lezione 5 Dinamica del punto
Lezione 7 Dinamica dei sistemi di punti materiali
Agenda di oggi Attrito Cos’è? Come lo caratterizziamo?
Pg 1 Agenda di oggi Agenda di oggi Le tre leggi di Newton Come e perchè un oggetto si muove? Dinamica.
Le leggi della dinamica
Vettori. Le grandezze fisiche Lo scopo della fisica è quello di ricavare le leggi che legano le varie grandezze fisiche. Le grandezze fisiche sono le.
CINEMATICA DINAMICA ENERGIA. Cosa rappresenta la linea a ? a LO SPAZIO PERCORSO LA TRAIETTORIA LA POSIZIONE RAGGIUNTA ……………...
I.T.C. e per Geometri Enrico Mattei
Il Movimento Cinematica.
Vettori Finche’ il moto si svolge in una sola dimensione – moto unidimensionale, moto rettilineo – non abbiamo bisogno di vettori La posizione e’ individuata.
Sistemi di riferimento
I vettori Le grandezze fisiche si dividono in Direzione
I VETTORI Definizione Componenti e modulo Somma e differenza
GRANDEZZE SCALARI E VETTORIALI
Il moto armonico Palermo Filomena.
Esempio 1 Consideriamo un punto materiale che effettua un moto particolare lungo l’asse x. Supponiamo per esempio che la particella parta da un punto.
Moti piani (moti in due dimensioni)
Dinamica.
1 Come abbiamo preannunciato ieri, consideriamo alcuni semplici esperimenti, il cui esito è prevedibile in base alla nostra esperienza quotidiana (e non.
Riepilogo della parte di programma oggetto della prova parziale 1.
Lavoro ed Energia.
Esempio 2 Consideriamo una molla attaccata al soffitto con un peso agganciato all’estremità inferiore in condizioni di equilibrio. Le forze esercitate.
Cinematica Punto materiale: modello che rappresenta un oggetto di piccole dimensioni in moto Traiettoria: linea che unisce tutte le posizioni attraverso.
Ricapitoliamo: Abbiamo introdotto la dinamica dicendo che in sostanza, il problema della dinamica di un corpo (per semplicità un punto materiale) è.
(descrizione quantitativa del moto dei corpi)
Esercizi (attrito trascurabile)
MOTO circolare uniforme
Corso di Fisica Lezione 4 La dinamica.
© Nichi D'Amico1 Lezione I Avviare la presentazione col tasto “Invio”
1 Lezione V – seconda parte Avviare la presentazione col tasto “Invio”
© Nichi D'Amico1 Lezione II - seconda parte Avviare la presentazione col tasto “Invio”
due argomenti strettamente connessi
1 Lezione X -b Avviare la presentazione col tasto “Invio”
1 Lezione IX seconda parte Avviare la presentazione col tasto “Invio”
I PRINCIPI DELLA DINAMICA
1 Lezione XIII – terza parte Avviare la presentazione col tasto “Invio”
© Nichi D'Amico1 Lezione II – terza parte Avviare la presentazione col tasto “Invio”
1 Lezione VII – seconda parte Avviare la presentazione col tasto “Invio”
1 Lezione XI Avviare la presentazione col tasto “Invio”
Nichi D'Amico1 Lezione II Avviare la presentazione col tasto “Invio”
1 Lezione VI – seconda parte Avviare la presentazione col tasto “Invio”
Avviare la presentazione col tasto “Invio”
1 Lezione IX – quarta parte Avviare la presentazione col tasto “Invio”
1 Lezione XV-a Avviare la presentazione col tasto “Invio”
1 Lezione VI Avviare la presentazione col tasto “Invio”
Avviare la presentazione col tasto “Invio”
Le grandezze vettoriali
Transcript della presentazione:

1 Lezione IX – terza parte Avviare la presentazione col tasto “Invio”

2 Riepilogo III

3 Le forze d’attrito

4 F = F 1  a = 0 F = F 2  a = 0 F = F 3  a = 0 F = F 4  a ≠ 0 Supponiamo di applicare una forza F 1 ad un corpo posizionato su di una superficie non perfettamente liscia: Non succede niente ! Aumentiamo la forza: F 2 > F 1 Aumentiamo la forza: F 3 > F 2 Aumentiamo la forza: F 4 > F 3

5 F = F 1  a = 0 F = F 2  a = 0 F = F 3  a = 0 In base alle Leggi di Newton possiamo affermare che esiste una forza eguale a –F 1 applicata al corpo cosicché essendo la risultante delle forze F 1 – F 1 = 0, risulta a = 0. Chiameremo questa forza f s (Forza di attrito Statico)

6 F = F 4  a ≠ 0 Se osserviamo in dettaglio il moto nel caso F 4 scopriamo che se manteniamo applicata la forza, il corpo si muove di moto accelerato Tuttavia, se facciamo delle misure scopriamo che a < F 4 / m Evidentemente, esiste una forza contraria tale che la risultante F r obbedisce alla relazione F r = m a F r = F 4 – f k = m a Chiameremo questa forza f k (Forza di attrito Dinamico)

7 Va da sé che una volta «sbloccato» il corpo dalla posizione di quiete, se vogliamo semplicemente che mantenga uno stato di moto uniforme ( a = 0 ), dobbiamo smorzare la forza F 4 fino a eguagliare in modulo f k F 4 = - f k fk fk

8 Quindi, in sostanza, se misuriamo in funzione del tempo la forza F necessaria per sbloccare il corpo dalla sua posizione di quiete e poi mantenerlo in uno stato di moto uniforme ( a = 0 ), otteniamo un grafico di questo tipo: Tempo (s) Forza F applicata F > f s f k

9 Si osserva che la forza di attrito f è proporzionale alla forza normale N che mantiene a contatto la massa in questione con la superficie su cui si trova. Di norma l’attrito è quantificato attraverso l’introduzione del cosiddetto coefficiente d’attrito μ Definiremo pertanto il coefficiente d’attrito statico in base alla formula: f s = μ s N E definiremo il coefficiente d’attrito dinamico (o cinetico) in base alla formula f c = μ c N

Per pervenire alla formulazioni delle nostre Leggi e per sviluppare un approccio metodologico che ci consenta di prevedere l’esito degli esperimenti, vi ricordo che eravamo partiti dallo studio di: Cinematica e Dinamica che ci hanno anche indirizzato verso applicazioni del calcolo differenziale (derivate e integrali) e ci siamo dovuti anche impratichire con altri strumenti di lavoro: Algebra vettoriale 10

Per pervenire in modo formalmente corretto alle nostre formulazioni: ci siamo dotati di adeguati strumenti di lavoro Abbiamo definito le grandezze fisiche fondamentali Abbiamo enunciato le leggi fondamentali della dinamica 11

12 GRANDEZZE SCALARI E GRANDEZZE VETTORIALI Ripensando agli esperimenti che abbiamo immaginato a proposito della quantità di moto, ci rendiamo conto che in Fisica esistono sia: grandezze scalari o più semplicemente uno scalare che grandezze vettoriali o più semplicemente un vettore Per grandezza scalare intendiamo una grandezza fisica identificata semplicemente da un valore numerico: per esempio fra quelle che abbiamo già trattato nei nostri esperimenti, la massa. Diremo quindi la massa è uno scalare. Per grandezza vettoriale intendiamo invece una grandezza fisica che oltre ad un valore numerico, necessita anche della individuazione di una direzione e un verso, per esempio fra quelle che abbiamo già trattato nei nostri esperimenti, la velocità. Diremo quindi che la velocità è un vettore

13 Proprietà dei vettori Le proprietà dei vettori possono essere facilmente descritte ricorrendo alla loro rappresentazione grafica. Prendiamo in considerazione il vettore «spostamento» Supponiamo di muoverci verso Est per 3km a partire da una posizione iniziale «0». Possiamo indicare questo spostamento nel grafico di seguito come segue: N S W E O 1 km

14 N S W E O 1 km Immaginiamo quindi di svoltare di 30 gradi a sinistra e di spostarci lungo questa nuova direzione di altri 5 km. Siamo in contatto radio coi nostri corrispondenti fermi al punto «0». Per farci raggiungere dobbiamo necessariamente descrivere il percorso che abbiamo fatto, o possiamo piuttosto indicare un percorso diretto ? 30°

15 N S W E O 1 km Immaginiamo quindi di svoltare di 30 gradi a sinistra e di spostarci lungo questa nuova direzione di altri 5 km. Siamo in contatto radio coi nostri corrispondenti fermi al punto «0». Per farci raggiungere dobbiamo necessariamente descrivere il percorso che abbiamo fatto, o possiamo piuttosto indicare un percorso diretto ? Ok, graficamente è semplice ma come ricavare la lunghezza (modulo) e l’angolo del vettore risultante ? (che sono poi le grandezze da comunicare ai nostri corrispondenti!) 30°

16 Componenti dei vettori Possiamo individuare un vettore indicandone il modulo (la lunghezza), la direzione e il verso: y x O φ a

17 Possiamo individuare un vettore indicandone il modulo (la lunghezza), la direzione e il verso: y x O φ a Le componenti lungo l’asse x e l’asse y saranno rispettivamente: a x = a cos ( ) a y = a sin ( ) φ φ axax ayay

18 Quindi, conoscendo a e possiamo determinare a x e a y a x = a cos ( ) a y = a sin ( ) Viceversa, conoscendo a x e a y possiamo determinare a e φ φ φ a = a x 2 + a y 2 tan = a y / a x

19 N S W E O 1 km 30° E torniamo adesso al quesito da cui eravamo partiti: la somma vettoriale Vogliamo definire il vettore s = a + b E’ intuitivo rendersi conto che, posto s = s x i + s y j Risulta: s x = a x + b x s y = a y + b y

20 s = s x 2 + s y 2 tan = s y / s x Ecco i dati da comunicare ai nostri corrispondenti fermi al punto «0»

21 Vettori unitari (versori) I versori sono vettori unitari (modulo = 1 ) che hanno direzione e verso di ciascuno degli assi cartesiani e vengono indicati con i simboli i e j rispettivamente: y x O i j Adottando questo formalismo, possiamo scrive il vettore a come: a = a x i + a y j

22 Moltiplicazione di un vettore per uno scalare y x O φ a Moltiplicare un vettore per uno scalare, significa semplicemente variarne il modulo y x O φ a

23 Prodotto scalare di due vettori Dati due vettori A e B: A B Definito θ l’angolo fra i due vettori, di definisce prodotto scalare di A e B A B = A x B cos (θ) Cioè il prodotto del modulo di A per la proiezione di A su B θ

24 Prodotto vettoriale di due vettori Lo vedremo più avanti quando ne troveremo un’applicazione in Fisica