Contropulsazione.

Slides:



Advertisements
Presentazioni simili
Emodinamica incruenta
Advertisements

VALUTAZIONE PRIMARIA RILEVAZIONE DEI PARAMETRI VITALI
IL CUORE anno accademico
Fisiologia del cuore.
LO SCOMPENSO CARDIACO.
Controllo della circolazione
Valutazione dei pazienti affetti da Scompenso Cardiaco
ARRESTO CARDIACO E URGENZE ARITMICHE IN ETA’ PEDIATRICA
Dott.ssa Elisabetta Muccioli
Valvulopatia Aortica Stenosi aortica Insufficienza aortica
Apparato Cardiocircolatorio
Disturbi del ritmo: classificazione
SHOCK Enrico Obinu “E.O. Ospedali Galliera Genova”
Divisione di Cardiologia Ospedale di Careggi- Firenze
FIBRILLAZIONE ATRIALE
Arianna Ferrari Unità Coronarica Lodi
L’INFARTO DEL MIOCARDIO OGGI COME PREVENIRLO COME CURARLO OVVERO ( Prevenzione primaria e secondaria della cardiopatia ischemica)‏ RELATORE DR. ADOLFO.
APPARATO CARDIO-CIRCOLATORIO
Il cuore.
IL POTENZIALE D'AZIONE CARDIACO
IL SISTEMA CARDIOCIRCOLATORIO E' un sistema di trasporto che mette in movimento un tessuto liquido (sangue), specializzato per la distribuzione di:
funzione di pompa del cuore; regolazione della contrattilità;
IL CICLO CARDIACO Eventi meccanici che caratterizzano il funzionamento del cuore. La durata normale di un ciclo è di 0.8 s a riposo: 1/3 è occupato dalla.
Attività motorie preventive ed adattate
TERAPIA DELLE EMERGENZE CARDIOLOGICHE
ACCOPPIAMENTO ECCITAZIONE-CONTRAZIONE
METODI D’INDAGINE DELLA RISPOSTA FUNZIONALE ALL’ESERCIZIO
Amplificatori di biopotenziali
APPARATO CARDIOVASCOLARE
IL SISTEMA CARDIOCIRCOLATORIO Anatomia e fisiologia
TRATTAMENTO INTRAOPERATORIO in CHIRURGIA VASCOLARE
Quando all’ipertensione polmonare si aggiunge…
I perchè di una iniziativa
Anatomia Fisiologia V. Cava inf. V. Cava sup. A. Aorta V. Polmonari
TERAPIA ELETTRICA ED USO DEL DEFIBRILLATORE
La CONTROPULSAZIONE AORTICA
SEMEIOTICA DEI POLSI ARTERIOSI Il polso e il paziente con alterazioni del ritmo e/o della frequenza cardiaca Prof. Giovanni Murialdo Corso integrato di.
Prof. Massimo Campieri IBD Unit Università di Bologna
R r qR rs qs QS rS rSR’ RSr’ Rs.
Istituto di Cardiologia Ospedale Ferrarotto - Catania
L’APPARATO CIRCOLATORIO
Morfologia e Ciclo cardiaco
Schema del ciclo diastole- sistole nel cuore
BUONGIORNO.
IDENTIFICAZIONE DEI PAZIENTI A RISCHIO DI MORTE CARDIACA IMPROVVISA
L’apparato cardiocircolatorio
ElettroCardioGramma.
Ipertensione arteriosa
IL CIRCUITO CARDIOVASCOLARE
Un caso di fibrillazione atriale a rischio
CRM Mastery Course Basis & Brady Le Bradiaritmie
Journal Club.
Le 4 fasi principali del ciclo cardiaco Le 7 fasi del ciclo cardiaco I° stato di attività del miocardio II° stato delle valvole La contrazione AD.
VALVULOPATIE Malattie causate dall’estensione al tessuto valvolare di processi infettivi od infiammatori sistemici.
L’apparato cardiocircolatorio
COSA DOBBIAMO RICORDARE 14. Sistema cardiocircolatorio I: Il Cuore Circolazione sistemica e polmonare: Funzioni del sistema Cenni di anatomia.
MONITORAGGIO RESPIRATORIO
Ritmi defibrillabili (FV, TV senza polso) Il monitor defibrillatore:
Test Da Sforzo e/o Ecostress? This is the problem!
Pressione aortica Pressione ventricolare Flusso aortico Flusso circonflessa mmHg l/ min ml/ min.
LA POMPA CARDIACA cardiaco_4.
LA PRESSIONE ARTERIOSA
IL CONTROLLO DEL CUORE cardiaco_5.
GENERAZIONE E CONDUZIONE DELL’ECCITAMENTO CARDIACO
Stenosi Aortica Ostruzione all’efflusso del ventricolo sinistro
“le innocenti follie del cuore”
Il cuore. IL CUORE Organo cavo posto al centro della gabbia toracica, occupa lo spazio fra i polmoni (mediastino) e la base del diaframma. Il peso (300.
EMODINAMICA.
Transcript della presentazione:

Contropulsazione

Cos’è la contropulsazione? Un supporto cardiaco meccanico temporaneo che incrementa la perfusione coronarica riduce la richiesta miocardica di ossigeno utilizzando un pallone intra-aortico un contropulsatore

Diastole: Gonfiaggio del catetere IAB .Aumento della perfusione coronarica

Sistole: Sgonfiaggio IAB . Diminuzione del lavoro cardiaco . Diminuzione del consumo di ossigeno . Aumento gittata cardiaca

La pressione in aorta: morfologia dell’onda Incisura dicrota Pressione media Sistolica Polso Diastolica 120 100 80 Sistole Diastole mm Hg

Incremento diastolico Perfusione coronarica telediastolica assistita Onda pressoria durante IABP Temporizzazione Incremento diastolico Perfusione coronarica Pressione telediastolica assistita  Richiesta MVO2 Sistole Assistita Sistole non assistita Gonfiaggio del pallone telediastolica non assistita 140 120 100 80 60 mm Hg

Il contropulsatore Effetti principali della terapia con contropulsatore Aspetti pratici sull’utilizzo del contropulsatore: analisi del sistema 96 sincronismi temporizzazione allarmi

Principio di funzionamento Segnale paziente di sincronizzazione Connessione catetere Membrana Sorgente pressione elio Gruppo pneumatico Sorgente vuoto Catetere a palloncino

Il contropulsatore IABP • Start up • schermo di aiuto • Opzioni utente Semplice nell’utilizzo: • Start up • schermo di aiuto • Opzioni utente • Trasportabile Automatico: • Temporizzazione • Procedura di riempimento dell’elio • Rimozione automatica della condensa The pump uses a safety disk patient isolation system. Vacuum and pressure are alternately applied to shuttle helium into and out of the IAB catheter. Ease of use: Start up: Automated start up allows for rapid initiation of therapy. Help Screen: One button access to help screen for initial step-by-step set up guide and probable cause & corrective action for alarms and alerts. User Preferences: Allows for customization of display and audio features without interrupting pumping. Transportable: The system can be quickly removed from its hospital cart for transport. 4+ hours of battery time [including external battery] are available Automated: Timing: CardiosyncTM software accurately anticipates balloon timing by actually classifying specific cardiac beat patterns. The system analyzes the emerging rhythm, rapidly adapts to arrhythmias and ectopic beats, and controls timing in a manner which maximizes trigger reliability and augmentation Helium fill procedure:The system automatically purges and refills the balloon catheter circuit with helium every two hours to maintain optimal helium concentration and balloon inflation [when augmentation set at maximum] Condensate removal: During balloon pumping condensed water vapor may be observed in the catheter extension tubing. The condensate removal module will automatically collect and remove the condensate without operator intervention or interruption of pumping.

SINCRONISMI Sincronismo: qualsiasi segnale biologico del paziente che sia in grado di gestire in modo sincrono con l’attività cardiaca del paziente il gonfiaggio e lo sgonfiaggio del catetere intra-aortico

SINCRONISMI Sincronismi utilizzabili: ECG Pressione Stimolatore atriale Stimolatore V/AV Sincronismo interno

Selezione del sincronismo: Electrocardiogramma Punto di sincronizzazione T P Q S Temporizzazione: Incisura dicrota Pressione arteriosa Trigger selection: Trigger is the signal that the system uses to identify the beginning of the cardiac cycle. The ECG is the preferred trigger mode and the R wave is the trigger event. Timing: Timing refers to the positioning of inflation and deflation points on the arterial waveform. Inflation should occur at the onset of diastole and deflation should occur prior to ventricular ejection. With the pump in standby, the inflation marker identifies the selected period of balloon inflation based on the auto timing algorithm. Marker del gonfiaggio Soglia sincronismo pressione

ECG Trigger L’onda R è l’evento di sincronismo 120mV Indicazione di sincronismo valido: diamante lampeggiante Selezione da fonte diretta o esterna

ECG Trigger Reiezione dello stimolatore 40 msec. Blanking period R-wave Trigger ECG Trigger with Pacer Rejection Criteria to identify pacer spike includes Rejects all pulses of amplitude ± 2.0mV to ± 700mV and duration 0.1ms to 2ms with: 1) no tail, 2) 100 ms T.C. tail <1mV, or 3) 25ms T.C. tail <0.4mV Note: Pacer tail peak amplitudes shall not exceed 25% of the pacer pulse amplitude per AAMI EC13-1992 paragraph 3.1.4.2 From System Operating Instructions In ECG trigger mode, the pacer blanking period is 40 msec. Once the pump identifies the pacer spike a blanking period allows to pump to reject the entire pacer spike. If the duration of the pacer spike is abnormally long or the pacer spike is particularly large, the pump could inadvertently trigger from the pacer spike. In the event of triggering from the V pacer spike, this usually does not cause a problems since the pacer spike and the R-wave occur relatively close together. If the pump inadvertently triggers from the atrial pacer spike, this will result in early deflation and Pacer A trigger should be considered. See Pacer A trigger notes.

ECG Trigger - risoluzione problemi Cambio derivazione Cambio elettrodi Aumento del guadagno

Risoluzione problemi sul segnale ECG L’onda R è l’evento di sincronismo Verificare le condizioni del paziente Verificare le derivazioni Cambiare derivazione Aumentare il guadagno

Trigger pressione L’evento di sincronismo è rappresentato dall’incremento della pressione Sulla forma d’onda pressoria viene rappresentato il punto di sincronismo Utilizzo :sala operatoria -esis Arresto cardio-circolatorio Segnale ECG non adeguato

Sincronismo stimolatore V/A-V L’impulso ventricolare è l’evento di sincronismo stimolazione al 100% A-V pace: 80-224 msecs <125bpm V pace: < 185bpm Utilizzatosed con stimolazioneal 100% e onda R non “ affidabile”

Sincronismo interno Contropulsazione a sincrona Sincronismo generato da una sorgente interna Variabile o fisso 80 bpm o - 40-120bpm “INTERNO” Viene visualizzato sullo schermo Monitorizzazione continua dell’ecg con riconoscimento dell’attività cardiaca del paziente “ECG Rilevato (DETECTED) ” Indicato sullo schermo

Trigger interno Utilizzo: durante bypass arresto cardiaco

Temporizzazione temporizzazione corretta errori di temporizzazione

Aumento perfusione coronarica Riduzione richiesta di Valutazione della temporizzazione Aumento perfusione coronarica mm Hg C D A B E F Riduzione richiesta di O2 120 100 80 Inflation and deflation of the IAB change the configuration of the arterial pressure waveform. A properly timed balloon will inflate at the dicrotic notch, which will appear as a sharp “V” configuration between the systolic pressure and the diastolic augmentation. The peak diastolic augmentation represents the maximum pressure in the aorta with balloon inflation during diastole. Deflation of the balloon at the end of diastole is reflected in an assisted aortic end-diastolic pressure lower than the unassisted aortic end-diastolic pressure. Proper deflation will also reduce the systolic pressure that follows balloon deflation. The next systolic beat is called the assisted systole. A = ciclo cardiaco completo B = Pressione di fine diastole non assistita C = Pressione sistolica non assistita D = Aumento diastolico E = Pressione di fine diastole assistita ridotta F = Pressione sisitolica ridotta

Aumento non ottimale 120 mm Hg 100 80 Sistole Diastole

Fattori che agiscono sull’ Aumento diastolico 1. Condizioni emodinamiche del paziente: Frequenza cardiaca Stroke Volume Pressione arteriosa media Resistenze vascolari sitemiche Augmentation is achieved by displacement of blood and will be determined, in part, by stroke volume. Anything that reduces stroke volume, such as tachycardia and/or decreased cardiac index may negatively affect the level of augmentation achieved. Dysrhythmias may cause intermittent decreases in augmentation, as ectopic beats may diminish ventricular filling time and ultimately diastolic augmentation. Vasoactive drugs and changes in patient body temperature can alter augmentation pressure as they can affect vascular resistance and/or stroke volume. If systemic vascular resistance [SVR] is increased, ventricular ejection will potentially be impeded, thereby decreasing stroke volume and ultimately diastolic augmentation. Reduced SVR may affect the amount of occlusivity achieved by IAB inflation and effect the level of augmentation. As the hemodynamic condition of the patient improves, stroke volume and systolic arterial blood pressure rise. If stroke volume increases to a greater volume than that of the balloon’s displacement capabilities, augmentation will decrease.

Fattori che agiscono sull’aumento diastolico 2.Catetere Intra-aortico IAB: Pallone in parte nell’introduttore Pallone non completamente aperto Posizionamento del pallone Strozzatura nel catetere Perdita nel catetere Concentrazione bassa di elio IAB in sheath: If the balloon membrane has not entirely existed the introducer sheath, it will not inflate and deflate properly. [refer to instructions for use on guidelines for sheath placement]. IAB not unfolded: If after a few cycles of counterpulsation, it appears that the balloon membrane is not fully open, perform a manual inflation of the balloon [refer to instructions for use for manual inflation]. IAB position: Clinical experience has demonstrated that that optimal balloon placement is to position the IAB tip 1 to 2 cms distal to the left subclavian artery. A catheter that is placed too low may be unable to inflate fully due to the narrowing of the abdominal aorta. Conversely, a catheter placed too high may cause the balloon and catheter to bend around the arch or encourage catheter restraint. Either circumstance may prevent optimal balloon inflation and affect diastolic augmentation. Kink in IAB catheter: Any kink in the catheter or catheter extender tubing may obstruct the flow of gas through the system, thus influencing diastolic augmentation. IAB leak: A sudden change in the diastolic augmentation pressure may also indicate the presence of blood in the balloon membrane or tubing. This will affect gas shuttling and ultimately diastolic augmentation. Low Helium concentration: It is normal for small molecules of Helium to diffuse across the balloon membrane over time. With patients that are tachycardic and/or hyperthermic the rate of Helium diffusion will increase, resulting in a reduction in augmented diastolic pressure.

Fattori che agiscono sull’aumento diastolico 3. IABP Temporizzazione Posizionamento del controllo dell’aumento del catetere IAB Timing: Proper timing is essential to ensure displacement of the available stroke volume is maximized and optimal diastolic augmentation is achieved. Late Inflation and/or Early Deflation are incorrect timing and will result in sub optimal augmentation. Position of IAB augmentation control: For optimal augmentation the IAB augmentation control should be set a maximum. If set below maximum the balloon will not inflate to it’s full volume and diastolic augmentation pressure will be affected.

Temporizzazione Temporizzazione ottimale

Temporizzazione Errori - 1 Waveform Characteristics: • Inflation of IAB prior to dicrotic notch • Diastolic augmentation encroaches onto systole [may be unable to distinguish] Physiologic Effects: • Potential premature closure of the aortic valve • Potential increase in LVEDV and LVEDP or PCWP • Increased left ventricular wall stress or afterload • Aortic regurgitation • Increased MVO2 demand Gonfiaggio prematuro

Temporizzazione Errori - 2 Gonfiaggio tardivo Waveform Characteristics: • Inflation of the IAB after the dicrotic notch • Absence of a sharp V • Sub-optimal diastolic augmentation Physiologic Effects: • Sub-optimal coronary artery perfusion

Temporizzazione Errori - 3 Sgonfiaggio prematuro Waveform Characteristics: • Deflation of IAB is seen as a sharp drop following diastolic augmentation • Sub-optimal diastolic augmentation • Assisted aortic end-diastolic pressure may be equal to or less than the unassisted aortic end-diastolic pressure • Assisted systolic pressure may rise Physiologic Effects: • Sub-optimal coronary perfusion • Potential for retrograde coronary and carotid blood flow • Angina may occur as a result of retrograde coronary blood flow • Sub-optimal afterload reduction • Increased MVO2 demand

Temporizzazione Errori - 4 Waveform Characteristics: • Assisted aortic end-diastolic pressure may be equal to the unassisted aortic end-diastolic pressure • Rate of rise of assisted systole is prolonged • Diastolic augmentation may appear widened Physiologic Effects: • Afterload reduction is essentially absent • Increased MVO2 consumption due to the left ventricle ejecting against a greater resistance and a prolonged isovolumetric contraction phase • IAB may impede left ventricular ejection and increase the afterload Sgonfiaggio tardivo

TEMPORIZZAZIONE Esempi sulla temporizzazione

TEMPORIZZAZIONE : CASO 1 Gonfiaggio: tardivo: forma dell’onda all’incisura dicrota a U Sgonfiaggio : ok Sistole assistita D non ridotta pressione telediastolica assistita B< A U

TEMPORIZZAZIONE: CASO 2 Gonfiaggio: OK SGONFIAGGIO: TARDIVO b>a

TEMPORIZZAZIONE : CASO 3 Gonfiaggio: estremamente tardivo Sgonfiaggio precoce: Gonfiaggio estremamente tardivo Aumento diastolico non ottimale Incisura dicrota

Temporizzazione : caso 6 Gonfiaggio: corretto Sgonfiaggio: B<A D<C

Il contropulsatore system 96 Aspetti teorici :

Pannello posteriore

Pannello posteriore manuale Disco di sicurezza dispositivo rimozione condensa bombola elio medicale connettore ecg connettore pressione connettori collegamento monitor esterno porta per riempimento manuale

Pannello posteriore Connessione cavo di alimentazione connettore 24 V D.C. timer interruttore principale connettore rs 232 ( uscite diagnostiche) connessione telefonica

Pneumatica Safety Disk Dispositivo di rimozione della condensa Bombola dell’elio

Pneumatica Safety Disk Shuttle Gas Port Flexible Isolation Membrane (Diaphragm) Shuttle Gas Port Drive Port Pressure/Vacuum Metal Housing The safety disk of the System 95-98xt consists of two parts: a closed, helium-filled side and an open, air-driven side separated by an isolation membrane(the polyurethane diaphragm).The metal housing is concave on the inside and when joined together, the two halves are separated by a polyurethane diaphragm. Pressure applied to the diaphragm can be up to 8 PSI. Consequently, this is the peak pressure that is seen by disk and the beginning of the catheter. By design, when the disk’s membrane is fully toggled, ie the shuttle gas is fully displaced, the pressure in the IAB and catheter decays to 2 PSI. The transducers, on either side of the diaphragm measure pressure changes and diaphragm movement. The safety disk design resulted in an improvement in pneumatic efficiency compared to the safety chamber because of the decrease in pneumatic dead space. Additional pneumatic improvements were a result of the addition of a vent valve that is active upon deflation of the IAB and improvements in the pressure vacuum solenoid design (System 98/98xt) The vent valve is designed to decrease the load on the vacuum side of compressor. System 95-97e: At the onset of deflation, the vent valve opens and remains open for 40 milliseconds to vent the inflation pressure to atmosphere (i.e.: from 8.5 psi to 0 psi). Then the vacuum solenoid (valve) opens, and vacuum brings the system down to -8.5 psi. This allows more effective maintenance of vacuum and more consistent deflation speeds. System 98/98xt: The vent valve opens selectively at the onset of deflation; with some cardiac cycles, the vent valve may open at the onset of deflation, at other times, the system may simply apply vacuum to deflate the IAB without first venting the pressure to atmosphere. The addition of the vent valve is one reason we no longer need to optimize augmentation on the 95-98xt. [Information source-notes from product launch training]

Bombola di elio Autonomia superiore ai 2 mesi di contropulsazione continuativa (24h) Manometro di indicazione della pressione della bombola Riempimento automatico ogni 2 ore Avvertimento in caso di elio insufficiente ( circa 24 ricariche disponibili*)

PANNELLO ANTERIORE monitor TASTIERA INTERUTTORE ACCENSIONE STAMPANTE TERMICA Indicatore stato di carica delle batterie UNITA PRINCIPALE CARRELLO DA REPARTO

IL DISPLAY

Tastiera