Analisi dei dati di espressione genica ottenuti mediante microarray UNIVERSITA’ DEGLI STUDI DI PISA LAUREA IN INGEGNERIA BIOMEDICA CORSO DI ANALISI E MODELLI DI SEGNALI BIOMEDICI Analisi dei dati di espressione genica ottenuti mediante microarray Erika Melissari
Microarray a DNA: tecnologie di costruzione dei vetrini Microarray a cDNA - sonde sintetizzate prima dell’ancoraggio al vetrino - lunghezza delle sonde: 200-400 mer - tecnologia spotted microarray Microarray ad oligonucleotidi - sonde sintetizzate direttamente sul vetrinosintetizzazione in situ - oligonucleotidi corti; lunghezza delle sonde: 20-40 mer (Affymetrix GeneChip) - oligonucleotidi lunghi; lunghezza delle sonde: 60 mer (Agilent)
I microarray: la tecnologia “Spotted” Array Affymetrix GeneChip®
I microarray: la tecnologia Agilent®
Esperimento microarray COMPARATIVO Classe/i sperimentale/i vs classe di controllo QUANTITATIVO Per ciascun gene ottengo una quantificazione numerica della differenza di espressione fra le popolazioni che sto confrontando: Fold-Change Metto a confronto molti campioni provenienti da 2 o più popolazioni. P.es. campioni di tessuto o di cellule: Trattati con farmaco vs non trattati con farmaco Tumorali vs sani Cuore vs Fegato vs Polmone Def: Fold-Change: -calcolato per ciascun gene -rapporto fra il valore medio dell’espressione del gene nei campioni in condizione sperimentale vs il valore medio dell’espressione del gene nei campioni in condizione di controllo
1) Estrazione dell’RNA totale dai campioni cellule trattate cellule non trattate 2) Isolamento dell’ mRNA, retrotrascrizione in cDNA e marcatura con fluorofori 3) Ibridizzazione RNA RNA 4) Scansione del vertino cDNA Cy3 Cy5 cDNA Cy3 Cy5
Microarray per l’analisi dell’espressione genica Centinaia di copie monofilamento di regioni specifiche di ciascun gene formano uno SPOT S3 I microarray sfruttano la proprietà di ibridazione degli acidi nucleici. Sono infatti costituiti da supporti di vetro della grandezza di un vetrino da microscopio sui quali vengono ancorati centinaia di migliaia di singoli filamenti di DNA. Ciascun gene è analizzato, infatti, grazie ad alcune centinaia di copie monofilamento di una sua regione estremamente specifica, immobilizate sul vetrino a formare uno spot. L’esposizione della superficie del vetrino ad una soluzione contenente l’mRNA dei campioni da confrontare, precedentemente marcato con due differenti sostanze capaci di emettere fluorescenza, consente l’bridazione dei frammenti di mRNA alle sonde in quantità proporzionale alla concentrazione presente nei due campioni. La successiva rivelazione della fluorescenza emessa porta alla quantificazione di questa concentrazione e, quindi, del “fold-change”, cioè della variazione di espressione fra i due campioni ibridizzati.
Fase “wet” di un esperimento microarray Estrazione mRNA Retrotrascrizione e Marcatura Ibridazione Scansione S4 Più nel dettaglio la parte di esperimento realizzata in laboratorio e che porta all’ibridazione del vetrino e successiva generazione dell’immagine si articola essenzialmente in quattro passaggi…. L’estrazione dell’mRNA dai campioni di interesse La retrotrascrizione in cDNA e la marcatura con i due fluorofori. I due campioni di cDNA marcato andranno a formare la mix di ibridazione. L’ibridazione overnight sul vetrino, per consentire l’appaiamento alle sonde La scansione con uno speciale scanner a doppio laser che eccita differenzialmente i due fluorofori e acquisisce separatamente i segnali di fluorescenza provenienti da essi.
Analisi dei dati Quantizzazione dei dati Immagine 16-bit formatoTIFF Pre-trattamento dei dati Normalizzazione Estrazione dei dati di espressione differenziale Verifica biologica ed interpretazione del risultato
Quantizzazione dei dati Trasformazione dell’informazione di colore in informazione numerica Scansione + estrazione dei valori di foreground e di background
Scansione del vetrino Scansione
Scansione del vetrino Risoluzione spaziale: 52 μm Scanner a due laser Lunghezze d’onda di eccitazione/assorbimento dei fluorocromi 635 nm - Red 532 nm - Green Canali separati in acquisizione formazione di due immagini Codifica su 16 bit: 2^16 = 65536 livelli di colore Occupazione di memoria: 250 MB 1GB Risoluzione spaziale: 52 μm
Quantizzazione dei dati “Gridding” dell’immagine GAL file (Gene Array List file) Segmentazione spaziale Segmentazione per intensità Segmentazione: spaziale; per intensità; Segnale Background Estrazione delle intensità del foreground (segnale proveniente da ibridizzazione specifica) e del background (rumore). Per ciascuno spot: media dei pixel; mediana dei pixel.
Analisi dei dati Pre-trattamento dei dati Immagine 16-bit formatoTIFF Quantizzazione dei dati Pre-trattamento dei dati Pre-trattamento dei dati Normalizzazione Estrazione dei dati di espressione differenziale Verifica biologica ed interpretazione del risultato
Pre-trattamento dei dati Fenomeni che generano rumore (background): “legame del campione marcato al microarray in aree esterne allo spot spotting” scorretto; legami aspecifici del campione con il supporto; fluorescenza propria di reagenti non eliminati con il lavaggio. Correzione del background per sottrazione dal segnale utile del suo valore calcolato su aree dedicate esterne allo spotsegnale netto Applicazione di indicatori di qualità agli spot per la selezione dei geni giudicati idonei per la successiva analisi SNR = Mediana del segnale netto / SD del rumore
Analisi dei dati Normalizzazione Immagine 16-bit formatoTIFF Quantizzazione dei dati Pre-trattamento dei dati Normalizzazione Normalizzazione Estrazione dei dati di espressione differenziale Verifica biologica ed interpretazione del risultato
Normalizzazione (1) DEF: Correzione dell’effetto sistematico di fonti di variabilità che possono influenzare i risultati di un esperimento microarray. Tali fonti possono essere generate da: Quantità iniziali diverse di RNA ibridizzato sul vetrino; Diversa efficienza di incorporazione dei due fluorocromi durante il processo di marcatura; Diversa efficienza dello scanner nell’eccitazione dei due fluorofori; Diversa efficienza dei due fluorofori nell’emissione dell’energia acquistata; Diversa efficienza dello scanner nell’acquisizione dei due canali.
Ipotesi biologica che “autorizza” il processo di normalizzazione Ipotesi: la condizione sperimentale studiata influenza significativamente l’espressione di “pochi” geni rispetto alla totalità dei geni presenti sul vetrino N.B.: valida solo su vetrini dove è possibile indagare l’intero trascrittoma di un organismo 18
Normalizzazione (2) A =½ log (R*G) M = log (R/G) Esperimento Self-Self: è un metodo utilizzato durante i primi studi sui microarray che ha consentito di rilevare la presenza di errori sistematici. Due aliquote dello stesso campione vengono marcate con i due fluorofori e ibridizzate sullo stesso vetrino SCATTERPLOT Fold Change A =½ log (R*G) M = log (R/G) MA-PLOT
Perché si usa il log del Fold-Change? Intervalli di rappresentatività dell’espressione differenziale Rende uguali gli intervalli di rappresentatività dei geni sotto-espressi e dei geni sovra-espressi Rende gaussiana la distribuzione dei log(Fold-Change)
Normalizzazione (3) Il processo di normalizzazione è necessario anche per confrontare e mettere insieme dati provenienti da repliche Repliche sperimentali: l’mRNA estratto da ogni individuo viene diviso in aliquote, marcato e ibridizzato su almeno tre vetrini insieme a un altro campione marcato con l’altro fluoroforomiglioro la qualità delle osservazioni su ciascun individuo, ma ciò non è sufficiente per quantificare l’espressione media di un gene in una popolazione di individui dello stesso tipo Repliche biologiche: l’mRNA proviene da campioni biologici dello stesso tipo ma distinti (ad esempio individui diversi). Ciascuno di essi viene marcato e ibridizzato una o al più due volte su rispettivamente uno o due vetrini miglioro l’accuratezza nella stima della media di popolazione, ma peggioro quella del singolo individuo Le repliche migliorano l’accuratezza della misura. Più repliche abbiamo, meglio riusciamo ad osservare la quota random degli errori...ma i costi???
Come disegno un esperimento efficiente? DEF: Efficienza ~ 1/varianza delle stime “Posso comprare solo 10 array ma non ho problemi a reperire campioni.” posso puntare a migliorare la misurazione della differenza media di espressione nelle popolazioni a confrontonon ibridizzo copie sperimentali ma copie biologiche “Ho solo 10 campioni (non ho problemi a comprare array).” posso puntare a migliorare l’efficienza nella misurazione dell’espressione nei singoli campioniibridizzo più copie sperimentali per ciascun campione È chiaro dal discorso appena fatto che la decisione su quale disegno sperimentale adottare per il proprio esperimento và presa valutando l’efficienza dei diversi disegni e la sua capacità di far fronte agli interrogativi biologici ai quali vogliamo rispondere. Ma cosa significa efficienza? La letteratura ci dice che è efficace una soluzione che raggiunge l’obbiettivo per il quale è stata commissionata, mentre è efficiente una soluzione che non solo lo raggiunge, ma anche minimizzando i costi, cioè ho una soluzione ottimizzata. Se faccio centro sono efficace, se faccio centro al primo tentativo sono efficiente. Per noi l’efficienza si traduce nella capacità del disegno di minimizzare la varianza delle stime delle differenze fra due classi, cioè è proporzionale all’inverso della varianza delle stime. Essa và valutata per esperimenti equivalenti, cioè blocco il numero di array, oppure blocco il numero di campioni disponibili per l’esperimento e valuto l’efficienza. Questo si traduce nelle due classiche domande, mutuamente esclusive, che vengono poste durante la pianificazione di un esperimento, e cioè.... Non è sempre possibile realizzare esperimenti con il massimo livello di replicazioneBisogna stabilire qual è il disegno sperimentale più EFFICIENTE rispetto al quesito biologico che si vuole indagare e al budget a disposizione
Normalizzazione (4) Normalizzazione within array per correggere errori sistematici su ciascun array separatamente Normalizzazione between arrays per correggere errori sistematici che possono rendere eterogenei array biologicamente simili (copie sperimentali o biologiche)
Normalizzazione within array Normalizzazione globale -> Centraggio della distribuzione log2 R/G norm= log2 R/G ± c Non normalizzata Normalizzata
Normalizzazione within array Normalizzazione intensità-dipendente Interpolazione (fitting) LO(W)ESS (LOcally WEighted polynomial regreSSion) globale Fisso l’ampiezza della finestra di dati Calcolo la curva di smooting reale attraverso l’interpolazione polinomiale dei dati contenuti nella finestra Sposto la finestra e ri-calcolo la curva di smooting al suo interno “Raccordo” i pezzi in modo che non vi siano discontinuità e ricostruisco la curva di smooting reale complessiva “spazzolando” tutta la distribuzione dei dati Per ciascuna finestra calcolo lo scostamento fra smooting reale e smooting ideale “Sposto” i dati contenuti nella finestra in modo da azzerare lo scostamento 25
Normalizzazione between arrays Normalizzazione scale riscalatura della dispersione dei log-fold-change fra array per equilibrare i valori di M fra array scale 4 copie biologiche di swirl zebrafish (danio rerio)
Analisi dei dati Estrazione dei dati di espressione differenziale Immagine 16-bit formatoTIFF Quantizzazione dei dati Pre-trattamento dei dati Normalizzazione Estrazione dei dati di espressione differenziale Estrazione dei dati di espressione differenziale Verifica biologica ed interpretazione del risultato
Estrazione dei risultati Metodi statistici - t-statistic, ANOVA (ANalysis Of VAriance), Bayesian-statistic, S-score e test su permutazione dei dati Lista di geni differenzialmente espressi - A ciascun gene è associato un p-value e un valore di log(fold-change) medio, rappresentativo della differenza di espressione rilevata fra il gruppo di soggetti che formano il campione sperimentale e il gruppo dei soggetti di controllo
Lista di geni differenzialmente espressi Rank GeneSymbol Accession Number (Transcript) Description Differential expression (Up- or Down-regulation) P-value 1 DUSP1 NM_004417 ref|Homo sapiens dual specificity phosphatase 1 (DUSP1), mRNA 0.7606655 0.0004 2 SRGAP1 BC029919 gb|Homo sapiens SLIT-ROBO Rho GTPase activating protein 1, mRNA 1.0329521 0.00038 3 HES1 NM_005524 ref|Homo sapiens hairy and enhancer of split 1, (Drosophila) (HES1), mRNA 0.7117039 0.00026 4 SMAD3 U68019 gb|Homo sapiens mad protein homolog (hMAD-3) mRNA, complete cds -0.4286814 0.00021 5 RHEBL1 NM_144593 ref|Homo sapiens Ras homolog enriched in brain like 1 (RHEBL1), mRNA -0.5070915 0.00018 7 FZD10 NM_007197 ref|Homo sapiens frizzled homolog 10 (Drosophila) (FZD10), mRNA -0.6491815 0.00015 8 RGS16 NM_002928 ref|Homo sapiens regulator of G-protein signaling 16 (RGS16), mRNA 0.6270794 0.00012 9 GPR56 NM_201525 ref|Homo sapiens G protein-coupled receptor 56 (GPR56), transcript variant 3, mRNA -0.3310189 0.0001 10 ZNF831 NM_178457 ref|Homo sapiens zinc finger protein 831 (ZNF831), mRNA 0.3905212 0.008 11 TFPI NM_001032281 ref|Homo sapiens tissue factor pathway inhibitor (lipoprotein-associated coagulation inhibitor) (TFPI), transcript variant 2, mRNA -0.5849317 0.0075 . . . 2500 BTG1 NM_001731 ref|Homo sapiens B-cell translocation gene 1, anti-proliferative (BTG1), mRNA -0.3668739 0.05
Analisi dei dati Verifica biologica ed interpretazione dei risultati Immagine 16-bit formatoTIFF Quantizzazione dei dati Pre-trattamento dei dati Normalizzazione Estrazione dei dati di espressione differenziale Verifica biologica ed interpretazione dei risultati Verifica biologica ed interpretazione del risultato
Verifica biologica ed Interpretazione dei risultati Validare un sottoinsieme di geni differenzialmente espressi attraverso metodiche alternative (real time RT-PCR) Analizzare la lista dei geni DE per formulare ipotesi sul fenomeno biologico indagato attraverso informazioni sui singoli genisingle-gene analysis ricostruzione di reti biochimiche (pathway) di trasmissione del segnale pathway analysis caratterizzazione ontologicagene ontology analysis
Lista di geni differenzialmente espressi Rank GeneSymbol Accession Number (Transcript) Description Differential expression (Up- or Down-regulation) P-value 1 DUSP1 NM_004417 ref|Homo sapiens dual specificity phosphatase 1 (DUSP1), mRNA 0.7606655 0.0004 2 SRGAP1 BC029919 gb|Homo sapiens SLIT-ROBO Rho GTPase activating protein 1, mRNA 1.0329521 0.00038 3 HES1 NM_005524 ref|Homo sapiens hairy and enhancer of split 1, (Drosophila) (HES1), mRNA 0.7117039 0.00026 4 SMAD3 U68019 gb|Homo sapiens mad protein homolog (hMAD-3) mRNA, complete cds -0.4286814 0.00021 5 RHEBL1 NM_144593 ref|Homo sapiens Ras homolog enriched in brain like 1 (RHEBL1), mRNA -0.5070915 0.00018 7 FZD10 NM_007197 ref|Homo sapiens frizzled homolog 10 (Drosophila) (FZD10), mRNA -0.6491815 0.00015 8 RGS16 NM_002928 ref|Homo sapiens regulator of G-protein signaling 16 (RGS16), mRNA 0.6270794 0.00012 9 GPR56 NM_201525 ref|Homo sapiens G protein-coupled receptor 56 (GPR56), transcript variant 3, mRNA -0.3310189 0.0001 10 ZNF831 NM_178457 ref|Homo sapiens zinc finger protein 831 (ZNF831), mRNA 0.3905212 0.008 11 TFPI NM_001032281 ref|Homo sapiens tissue factor pathway inhibitor (lipoprotein-associated coagulation inhibitor) (TFPI), transcript variant 2, mRNA -0.5849317 0.0075 . . . 2500 BTG1 NM_001731 ref|Homo sapiens B-cell translocation gene 1, anti-proliferative (BTG1), mRNA -0.3668739 0.05
Interpretazione biologica e single gene analysis Rank GeneSymbol Accession Number (Transcript) Description Differential expression (Up- or Down-regulation) P-value 1 DUSP1 NM_004417 ref|Homo sapiens dual specificity phosphatase 1 (DUSP1), mRNA 0.7606655 0.0004 2 SRGAP1 BC029919 gb|Homo sapiens SLIT-ROBO Rho GTPase activating protein 1, mRNA 1.0329521 0.00038 3 HES1 NM_005524 ref|Homo sapiens hairy and enhancer of split 1, (Drosophila) (HES1), mRNA 0.7117039 0.00026 4 SMAD3 U68019 gb|Homo sapiens mad protein homolog (hMAD-3) mRNA, complete cds -0.4286814 0.00021 5 RHEBL1 NM_144593 ref|Homo sapiens Ras homolog enriched in brain like 1 (RHEBL1), mRNA -0.5070915 0.00018 7 FZD10 NM_007197 ref|Homo sapiens frizzled homolog 10 (Drosophila) (FZD10), mRNA -0.6491815 0.00015 8 RGS16 NM_002928 ref|Homo sapiens regulator of G-protein signaling 16 (RGS16), mRNA 0.6270794 0.00012 9 GPR56 NM_201525 ref|Homo sapiens G protein-coupled receptor 56 (GPR56), transcript variant 3, mRNA -0.3310189 0.0001 10 ZNF831 NM_178457 ref|Homo sapiens zinc finger protein 831 (ZNF831), mRNA 0.3905212 0.008 11 TFPI NM_001032281 ref|Homo sapiens tissue factor pathway inhibitor (lipoprotein-associated coagulation inhibitor) (TFPI), transcript variant 2, mRNA -0.5849317 0.0075 . . . 2500 BTG1 NM_001731 ref|Homo sapiens B-cell translocation gene 1, anti-proliferative (BTG1), mRNA -0.3668739 0.05
Banche dati Banche dati NCBI http://www.ncbi.nlm.nih.gov/ - GeneInfo sui geni - Nucleotide Info sui trascritti - PubMedRicerca di pubblicazioni scientifiche di ambito medico - …. Kegg http://www.genome.jp/kegg/ - Kegg GenesInfo sui geni e sui trascritti - Kegg PathwayInfo sulle reti di trasduzione del segnale genico (pathway) Gene Ontology http://www.geneontology.org/ Informazioni sulla classificazione ontologica dei geni\prodotti genici
Per sapere qualcosa in più su un gene: Banche dati per l’annotazione dei geni Banche dati NCBI http://www.ncbi.nlm.nih.gov/ - GeneInfo sui geni - Nucleotide Info sui trascritti - Homologene Info sugli omologhi - OMIMInfo su malattie Mendeliane - PubMedRicerca di pubblicazioni di ambito medico/scientifico - ….
Banca dati Gene Nome (GeneSymbol) del genepuò essere identico per organismi differenti
Banca dati Nucleotide Codice del trascrittoè specifico per ogni organismo
“Portale”di informazioni bio-molecolari GeneCards http://www.genecards.org/
…ma le interazioni?
Interpretazione biologica della lista dei geni differenzialmente espressi: pathway e ontological analyses Utilizzare le informazioni contenute in: reti di interazione biochimica e di trasduzione del segnale genomico (pathway) pathway analysis Ontologie functional analysis relative a gruppi di geni differenzialmente espressi allo scopo di ipotizzare quale sia l’effetto a livello molecolare del fenomeno biologico indagato
Per sapere qualcosa in più sulle interazioni fra geni: Banche dati di pathway e ontologie Kegg http://www.genome.jp/kegg/ contiene: - Kegg GenesInfo sui geni e sui trascritti - Kegg PathwayInfo sulle reti di trasduzione del segnale genico (pathway) Gene Ontology http://www.geneontology.org/ contiene: Informazioni sulla classificazione ontologica dei geni\prodotti genici
KEGG http://www.genome.jp/kegg/ General pathway Human Pathway Ogni scatolina rappresenta un gene. I simboli: rappresenta un’attivazione fra due geni --| rappresenta una inibizione fra due geni human
Gene Ontology http://www.geneontology.org/ Consorzio che si occupa della definizione delle ontologie geniche per la classificazione dei geni attraverso i loro prodotti genici (Proteine) Ontologia genica: -vocabolario unico, - indipendente dall’organismo, - descrizione dettagliata dei geni attraverso i loro prodotti genici (proteine) possibilità di “trasferimento” delle informazioni funzionali fra organismi differenti a parità di complessità del genoma possibilità di “trasferimento” delle informazioni funzionali da organismi “meno complessi” ad organismi “più complessi” univocità nella descrizione delle caratteristiche di un gene
Peter Karp (2000) Bioinformatics 16:269 Cos’è un’ontologia? An ontology is a specification of a conceptualization that is designed for reuse across multiple applications and implementations. …a specification of a conceptualization is a written, formal description of a set of concepts and relationships in a domain of interest. Peter Karp (2000) Bioinformatics 16:269 … un insieme di definizioni
Cos’è un’ontologia genica? Ontologia genica: un vocabolario di definizioni, indipendente dall’organismo, che descrive i geni attraverso i loro prodotti genici (proteine) “trasferimento” delle informazioni funzionali fra organismi differenti a parità di complessità del genoma “trasferimento” delle informazioni funzionali da organismi “meno complessi” ad organismi “più complessi” univocità nella descrizione delle caratteristiche di un gene
Tre ontologie Funzione molecolare -> funzione biochimica di un prodotto genico - enzima, lega gli ioni calcio, lega i nucleotidi, etc Processo biologico -> processo di co-regolazione all’interno del quale il prodotto genico può essere inserito - metabolismo di una molecola, glicolisi, ciclo della cellula, apoptosi Componente cellulare -> “luogo” della cellula nel quale un determinato prodotto genico può agire - membrana cellulare, reticolo endoplasmatico Struttura gerarchica -> DAG (grafi aciclici diretti)
Componente cellulare Dove agisce un prodotto
Componente cellulare
Componente cellulare
Funzione molecolare Attività o compito del prodotto genico glucose-6-phosphate isomerase activity
insulin receptor activity Funzione molecolare insulin binding insulin receptor activity 24th Feb 2006 Jane Lomax
Processo biologico -una serie di eventi a cui prende parte il prodotto cell division
Processo biologico transcription
regulation of gluconeogenesis Processo biologico regulation of gluconeogenesis
Processo biologico limb development
DAG Categorie ontologiche Ontologie o GO term: tutti i sottolivelli di un’ontologia > A ciascun GO term è associata: una definizione un insieme di geni che in esso vengono annotati per ciascun organismo Ontologie Categorie ontologiche
Struttura di un’ontologia Ogni ontologia non è una lista di termini biologici, ma è strutturata in livelli gerarchici Two arrangements for DNA replication
Software per l’analisi di pathway e di ontologie Pathway Analysis - Pathway-Express Functional Analysis - Onto-Express NB: questi software ricevono come input la lista dei geni differenzialmente espressi
PathwayExpress : http://vortex.cs.wayne.edu/projects.htm Impact Analysis: mappatura dei geni differenzialmente espressi nei pathway molecolari e valutazione della propagazione della perturbazione della trasduzione del segnale genico provocata dalla variazione di espressione genica
PathwayExpress : http://vortex.cs.wayne.edu/projects.htm
L’Impact Factor è formato da tre contributi: Numero di geni differenzialmente espressi mappati in un pathway rispetto al numero di geni che formano il pathwaylivello di rappresentatività della lista dei geni DE nel pathway Fold-change dei geni differenzialmente espressi mappatientità della perturbazione del pathway provocata dai geni differenzialmente espressi Posizione dei geni differenzialmente espressi all’interno del pathwayun gene posizionato a monte (p.es. sulla membrana cellulare o su un nodo cui fa capo una sottorete) di una cascata di segnale è “più importante” di un gene posizionato a valle Per comprendere il fenomeno biochimico e di poter formulare queste ipotesi, consultiamo banche dati che sono state create allo scopo di organizzare le informazioni riguardanti queste reti di co-regolazione. La più importante è KEGG che ci consente di poter reperire informazioni su tutti I pathway nei quali sono coinvolti I geni ai quali siamo interessati. Cercare di interpretare un gene differenzialmente espresso alla volta così come consente di fare KEGG, però, significa annullare il grosso vantaggio di parallelizzazione insito nell’esperimento di microarray. Per questo motivo si utilizzano SW di navigazione delle banche dati sulla base della sottomissione della lista di geni DE. Di questo tipo è Pathway explorer, che ci consente di avere una visione a livello di pathway della variazione dell’epressione. Oppure viene sottomessa la lista di geni DE a Pathway Express, che oltre a piazzare I geni di cui ha informazioni nei pathway produce anche un impact factor del gene, che è un parametro che stabilisce l’importanza di quel gene nel pathway considerato a seconda del suo livello di espressione, della sua posizione nel pathway e della rete di dialogo che il gene instaura con gli altri (è una sorta di parametro di centralità). In maniera indiretta fornisce così un livello di importanza dello stesso pathway.
OntoExpress: http://vortex.cs.wayne.edu/projects.htm Over-representation analysis: ci sono dei gruppi di geni differenzialmente espressi rappresentati in maniera “sproporzionata” in qualche GO term? Questa rappresentatività “sproporzionata” è statisticamente significativa rispetto al totale dei geni che vengono annotati in quel GO term? Cellular Component Biological Process Molecular Function Anche in questo caso I SW di navigazione delle informazioni ontologiche come OntoExpress, ci aiutano a mantenere la visione d’insieme prodotta attraverso l’esperimento. Purtroppo, le informazioni che in questo momento sono disponibili in maniera ordinata nelle banche dati non sono moltissime e ancora tanto si deve fare per l’unificazione delle ridondanze nei codici che identificano I geni. Per questo motivo si deve ricorrere comunque ad un’ispezione manuale della lista dei geni differenzialmente espressi non piazzati e reperire le informazioni che li riguardano
Info Erika Melissari Iscrizione all’esame e date appelli Materiale Ospedale S. Chiara, edificio 43, secondo piano Ospedale S. Chiara, edificio 43, piano terra, c/o Laboratorio Dott.ssa Pellegrini erika.melissari@for.unipi.it Iscrizione all’esame e date appelli www.ing.unipi.it Prenotazione esami Materiale http://131.114.94.135/lezioni/bioingegneria/Biologia_Molecolare/