Le equazioni di primo grado
Cerchiamo di determinare un numero che aggiunto al suo triplo dia 20. Problema Cerchiamo di determinare un numero che aggiunto al suo triplo dia 20.
Dal linguaggio naturale a quello matematico Come tradurre il nostro problema in termini matematici? Decidiamo di indicare con x il numero da determinare, ecco che il testo del problema può essere scritto così: x+3x=20 Sommiamo i termini simili 4x=20 A questo punto è facile rispondere che il numero cercato è 5.
Tanto è vero che se calcoliamo verifichiamo Tanto è vero che se calcoliamo 5+3*5 il risultato è proprio 20!
Le equazioni Le equazioni non sono altro che frasi in linguaggio matematico che possono essere vere per determinati valori e false per altri.
Riferendoci al problema appena visto diremo che l’equazione x+3x=20 risulta VERA se al posto di x sostituiamo 5, mentre diventa FALSA se al posto di x sostituiamo un altro numero.
Problema Cerchiamo ora un numero che addizionato al suo triplo dia esattamente il suo quadruplo.
Soluzione problema 2 Traducendo il testo in linguaggio matematico: x+3x=4x e perciò: 4x=4x. Ma ciò significa che la soluzione di questo problema potrebbe essere qualsiasi numero!
x+3x 20 Terminologia INCOGNITA primo membro secondo membro Il numero 5, che era il risultato del nostro problema, è detto soluzione.
il massimo esponente con cui compare l’incognita. Grado di un’equazione Si chiama grado di un’equazione il massimo esponente con cui compare l’incognita. 3x+24=12 è di primo grado 3x2+24=12 è di secondo grado 3x5+24=12 è di quinto grado 3x7+24=12 è di settimo grado
Equazioni equivalenti Due equazioni che hanno le stesse soluzioni si dicono equivalenti. Ad esempio 2x=10 che ha per soluzione 5 è equivalente a 3x=15 che pure ha per soluzione 5.
Risoluzione di un’equazione di primo grado Dobbiamo risolvere x+12=30 Proviamo a pensare all’equazione come ad una bilancia in perfetto equilibrio: se vogliamo mantenere l’equilibrio tutto ciò che viene fatto sul primo piatto deve farsi tale e quale nel secondo.
x+12 =30 -12 -12 x=18 Abbiamo applicato quello che viene chiamato primo principio delle equazioni.
3x = 30 3 3 x=10 Abbiamo applicato quello che viene chiamato secondo principio delle equazioni.
Equazioni impossibili Se un’equazione non ammette soluzione si chiama impossibile. 4x=4x+1 non ha soluzione: è impossibile x2=-2 non ha soluzione: è impossibile
Equazioni indeterminate Un’equazione che ha infinite soluzioni si dice indeterminata. 4x=4x ha infinite soluzioni: è indeterminata 2x=x+x ha infinite soluzioni: è indeterminata
FINE
Primo principio di equivalenza Se si somma o si sottrae lo stesso valore da ambo i membri di un’equazione si ottiene un’equazione equivalente.
Secondo principio di equivalenza Se si moltiplicano o si dividono per lo stesso valore ambo i membri di un’equazione si ottiene un’equazione equivalente.
viene chiamata la lettera che rappresenta il numero da determinare. Incognita Incognita viene chiamata la lettera che rappresenta il numero da determinare. In genere viene indicata con le ultime lettere dell’alfabeto
Soluzione Soluzione di un’equazione è quel numero che sostituito all’incognita rende vera l’equazione.