Modelli predittivi delle agenzie di rating internazionali: il modello MEU evoluto (maximum expected utility) Mattia Ciprian*, Daria Marassi°, Valentino.

Slides:



Advertisements
Presentazioni simili
1. LO SCORING Lo scoring è una metodologia di analisi che consente di esprimere un giudizio estremamente sintetico, rappresentato da un singolo numero,
Advertisements

Analisi della complessità degli algoritmi
Proprietà degli stimatori
Tecniche di analisi dei dati e impostazione dellattività sperimentale Relazioni tra variabili: Correlazione e Regressione.
EFFETTI CICLICI SULLA PD NEI MODELLI IN FORMA RIDOTTA Modelli in forma ridotta: - default variabile casuale (random) - PD stimate in modo esogeno Obiettivo:
STRUTTURA DEL LAVORO: Definizione di prociclicità
Inferenza Statistica Le componenti teoriche dell’Inferenza Statistica sono: la teoria dei campioni la teoria della probabilità la teoria della stima dei.
Evolvere robot stigmergici in Evorobot*
Sistemi di supporto alle decisioni 4. Clustering
Sistemi di supporto alle decisioni 2. Features space
Sistemi e processi nei servizi sanitari CdLM Ingegneria gestionale (II anno) Introduzione Prof. Gabriele Cevenini Dipartimento di Chirurgia e Bioingegneria.
Progetto Pilota 2 Lettura e interpretazione dei risultati
Metodi Quantitativi per Economia, Finanza e Management Lezione n°5
Metodi Quantitativi per Economia, Finanza e Management Lezione n° 11.
redditività var. continua classi di redditività ( < 0 ; >= 0)
I principali contenuti di Finanza d’Azienda
Esercizio 1 In una indagine statistica si vuole rilevare il numero di cellulari posseduti dagli studenti iscritti alla facoltà di economia. Si dica: -
Gli Indici di Produttività di Divisia
Processi Aleatori : Introduzione – Parte I
Appunti di inferenza per farmacisti
Alcune domande agli autori Lo studio affronta un argomento scientifico e/o clinico importante? Lo studio è originale? Lo studio è volto a provare le ipotesi.
Corso di biomatematica lezione 7-2: Test di significatività
IL CAMPIONAMENTO NELLA REVISIONE CONTABILE
Modelli simulativi per le Scienze Cognitive Paolo Bouquet (Università di Trento) Marco Casarotti (Università di Padova)
PATTERN RECOGNITION.
L’arte di fare strategia
Intelligenza Artificiale
Dipartimento di Tecnologie dell’Informazione
Analisi Informatizzata
STATISTICA PER LE DECISIONI DI MARKETING
Regressione Logistica
Milano 7 Novembre 2011 PROGETTO ValorE Dipartimento di Economia e Politica Agraria, Agro-alimentare e Ambientale Università degli Studi di Milano.
Semi-Supervised Learning
Tecniche descrittive Utilizzano modelli matematici per semplificare le relazioni fra le variabili in studio Il fine è la descrizione semplificata del fenomeno.
Trieste, 16 febbraio 2004 Le implicazioni del rischio di default per la determinazione del valore dellimpresa Dott. Giuliano Gasparet Dottorato di ricerca.
“Qualità è valore. ”. Alessandro Nova (Università L
Limiti dell’analisi per indici
Errori casuali Si dicono casuali tutti quegli errori che possono avvenire, con la stessa probabilità, sia in difetto che in eccesso. Data questa caratteristica,
Errori casuali Si dicono casuali tutti quegli errori che possono avvenire, con la stessa probabilità, sia in difetto che in eccesso. Data questa caratteristica,
Università degli Studi di Cagliari
STATISTICA PER LA RICERCA SPERIMENTALE E TECNOLOGICA
Obbiettivo L’obiettivo non è più utilizzare il campione per costruire un valore o un intervallo di valori ragionevolmente sostituibili all’ignoto parametro.
DATA MINING PER IL MARKETING
LABORATORIO DI ANALISI AVANZATA DEI DATI Andrea Cerioli Sito web del corso ESTENSIONI DEL MODELLO DI REGRESSIONE LINEARE MULTIPLA.
Complessità degli algoritmi (cenni) CORDA – Informatica A. Ferrari.
Analisi Bivariata: Test Statistici
Service CONTO TERMICO CONTO TERMICO. RinNOVA, INOVIA - CIRCUITI IDRAULICI Service CONTO TERMICO IN COSA CONSISTE: A PARTIRE DAL 03/01/13 E ENTRATO IN.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°3.
Strumenti statistici in Excell
Martina Serafini Martina Prandi
IL CAMPIONE.
CERIS-CNR Modelli di intelligenza artificiale: Default Risk e Rating Analysis G. Calabrese, G. Falavigna e A. Manello Ceris-Cnr Moncalieri Convergeing.
Matematica e Statistica "dai dati, ai modelli, alle scelte“ I.I.S. “V. Emanuele II – Ruffini”, GE Istituto Tecnico Commerciale “G. Ruffini”, IM Liceo Scientifico.
Modelli ed algoritmi per la riqualificazione dell’offerta nella raccolta di rifiuti solidi urbani Tesi di laurea di: Claudio Caremi.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°5.
Università degli Studi di Bologna FACOLTÀ DI INGEGNERIA Corso di Laurea in Ingegneria Gestionale Ricerca Operativa MODELLI PER L’OTTIMIZZAZIONE DELL’OFFERTA.
Progettazione di basi di dati: metodologie e modelli
Intervalli di confidenza
Economia e Organizzazione Aziendale
Economia e Organizzazione Aziendale L’Analisi di Bilancio Corso di Laurea in Ingegneria Elettrica.
Economia e Organizzazione Aziendale
TRATTAMENTO STATISTICO DEI DATI ANALITICI
Correlazione e regressione lineare
Il business plan come strumento strategico nel settore agricolo Paola Mazzurana Dipartimento di Scienze Economiche e Statistiche Università degli Studi.
La localizzazione di ambulanze Un approccio attraverso la Teoria dei Giochi.
Self-Organizing Map (SOM Kohonen, 1981) è una tecnica di visualizzazione dei dati multidimensionali SOM è una mappa mono- (bi-)dimensionale che rappresenta.
1 PROBLEMATICHE ECONOMICO- GESTIONALI DELLE MICRO E PICCOLE IMPRESE: QUALI POSSIBILI INTERVENTI.
NB: NON USARE QUESTO FILE POWERPOINT COME MODELLO (POT) 0 Pag.Fabrizio JemmaCorso di Economia e Organizzazione Aziendale Corso di "Economia ed Organizzazione.
La previsione della crisi Giovanna Mariani Facoltà di Economia Dipartimento di Economia Aziendale.
1 Corso di Laurea in Scienze e Tecniche psicologiche Esame di Psicometria Il T-Test A cura di Matteo Forgiarini.
Transcript della presentazione:

Modelli predittivi delle agenzie di rating internazionali: il modello MEU evoluto (maximum expected utility) Mattia Ciprian*, Daria Marassi°, Valentino Pediroda* mciprian@units.it daria.marassi@eu-ra.com pediroda@units.it * Dipartimento di Ingegneria Meccanica, Università di Trieste, Trieste, Italy ° Dipartimento di Economia e Tecnica Aziendale, Università di Trieste, Trieste, Italy

Il modello MEU evoluto che qui presentiamo analizza le aziende del DB COMPLEX al fine di determinarne il loro grado di rischiosità in termini di probabilità di default La probabilità di default viene definita quale rischio per l’impresa di non riuscire a far fronte alle proprie obbligazioni Introduzione – DataBase - Analisi Indici – Meu – Risultati - Conclusioni

Il processo di valutazione del default dell’impresa si divide in diverse fasi Introduzione – DataBase - Analisi Indici – Meu – Risultati - Conclusioni

Gli indicatori ovvero i dati di input del modello Meu vengono anche definiti indicatori predittivi del default in quanto possiedono un forte valore predittivo verso l’insolvenza dell’impresa. Al fine di definire un indicatore predittivo del default è necessario distinguere le aziende in due sottocampioni: - Imprese fallite - Imprese non fallite Introduzione – DataBase - Analisi Indici – Meu – Risultati - Conclusioni

Scelta degli indici di bilancio più correlati alla probabilità di default  analisi statistica. Varie metodologie disponibili: parametro di t-Student; SOM (Self Organizing Maps); Default Frequency. Ogni metodologia dà informazioni aggiuntive. Utilizzo contemporaneo degli indici di correlazione. Introduzione – DataBase - Analisi Indici – Meu – Risultati - Conclusioni

Parametro di t-Student: indice statistico per la significatività della media di due popolazioni distinte (default-No default). Ogni indice viene diviso in due intervalli (metà inferiore-metà superiore). Introduzione – DataBase - Analisi Indici – Meu – Risultati - Conclusioni

Indici eliminati Introduzione – DataBase - Analisi Indici – Meu – Risultati - Conclusioni

SOM (Self Organizing Maps) Necessità di usare anche strumenti più efficienti di indagine; L’idea è stata di utilizzare un potente strumento di indagine: le SOM (Self-Organizing Maps) . Le SOM permettono di esplicitare i rapporti tra gli elementi per mezzo di una proiezione non lineare da uno spazio di dati multi-dimensionale ad un piano bidimensionale. Introduzione – DataBase - Analisi Indici – Meu – Risultati - Conclusioni

Correlazione Nessuna correlazione Introduzione – DataBase - Analisi Indici – Meu – Risultati - Conclusioni

Default Frequency: analisi della distribuzione probabilistica tra imprese in default e meno, in relazione agli indici di bilancio La relazione tra gli indici con alto potere predittivo e il default è generalmente monotona. Introduzione – DataBase - Analisi Indici – Meu – Risultati - Conclusioni

Esempio di indice non correlato con il default, analizzato con Default Frequency. Introduzione – DataBase - Analisi Indici – Meu – Risultati - Conclusioni

Metodologia MEU (Maximum Expected Utility) Dati il vettore delle osservazioni X (indici di bilancio) e la variabile Y  0,1 (no default-default) bisogna trovare la misura di probabilità condizionata p(1|x) Metodologie esistenti: Fitting Logistic Regression Models, Clustering, Reti Neurali, Support Vector Machines. Nessuna considerazione finanziaria Introduzione – DataBase - Analisi Indici – Meu – Risultati - Conclusioni

Il problema diventa MULTI OBIETTIVO Idea base di MEU: Cercare la misura di probabilità che massimizza la funzione utilità di un investitore sui dati futuri (non conosciuti); Il modello deve essere consistente con i dati conosciuti (DataBase). Il problema diventa MULTI OBIETTIVO Introduzione – DataBase - Analisi Indici – Meu – Risultati - Conclusioni

Massimizzazione della funzione utilità Dati due modelli 1 e 2 con misure di probabilità dell’evento q1 e q2 si può definire il fattore entropia relativa: Il modello 1 sarà migliore del modello 2 se Du,O>0 Introduzione – DataBase - Analisi Indici – Meu – Risultati - Conclusioni

evitare valori elevati (problema dell’overfitting) Consistenza con i dati La consistenza del modello con i dati conosciuti deve essere una funzione strettamente decrescente rispetto la differenza tra il kernel calcolato sui dati reali e quelli modellati. I valori c sono i parametri liberi del modello  evitare valori elevati (problema dell’overfitting) Introduzione – DataBase - Analisi Indici – Meu – Risultati - Conclusioni

Algoritmo Massimizzazione di una likelihood (massimizzazione funzione utilità). Minimizzazione valore assoluto pesi (consistenza dati).  parametro di peso tra gli obiettivi Introduzione – DataBase - Analisi Indici – Meu – Risultati - Conclusioni

Funzioni di kernel Lineare Quadratica Kernel Introduzione – DataBase - Analisi Indici – Meu – Risultati - Conclusioni

Test numerico (tratto da relazione tecnica Standard & Poor’s) Introduzione – DataBase - Analisi Indici – Meu – Risultati - Conclusioni

Superficie di probabilità modellata con MEU Introduzione – DataBase - Analisi Indici – Meu – Risultati - Conclusioni

Utilizzo di MEU per la probabilità di default d’impresa Dati: 580 imprese (490 no default-90 default) 11 indici di bilancio (utilizzate SOM, t-Student, Default Frequency). Kernel: utilizzo delle tre metodologie (lineare, quadratico, esponenziale). Metodo di Newton per la minimizzazione della funzione likelihood (MATLAB). Introduzione – DataBase - Analisi Indici – Meu – Risultati - Conclusioni

Buona aderenza tra risultati del modello e dati del database Introduzione – DataBase - Analisi Indici – Meu – Risultati - Conclusioni

Valori dei parametri del modello limitati (-100,100)  buona probabilità di evitare l’overfitting Introduzione – DataBase - Analisi Indici – Meu – Risultati - Conclusioni

Importante contributo del termine esponenziale Con la metodologia MEU è possibile rappresentare la superficie di probabilità, correlandola a due indici di bilancio Importante contributo del termine esponenziale Introduzione – DataBase - Analisi Indici – Meu – Risultati - Conclusioni

Metodologia adattativa In questa zona dello spazio delle variabili importanza del termine quadratico. Metodologia adattativa Introduzione – DataBase - Analisi Indici – Meu – Risultati - Conclusioni

Buona aderenza tra risultati del modello e dati del database Introduzione – DataBase - Analisi Indici – Meu – Risultati - Conclusioni

Il numero di imprese viste in termini di probabilità di default Introduzione – DataBase - Analisi Indici – Meu – Risultati - Conclusioni

La frequenza delle imprese in termini di probabilità di default Introduzione – DataBase - Analisi Indici – Meu – Risultati - Conclusioni

Ottimi fondamenti numerici: si parte da considerazioni finanziarie. La metodologia MEU può essere considerata un utile tecnologia numerica per determinare la probabilità di default (incoraggianti primi test). Ottimi fondamenti numerici: si parte da considerazioni finanziarie. Fondamentale è la conoscenza approfondita del problema che si vuole esaminare (data base completo). Tempi di calcolo lunghi (5-10 ore). Dipendenza del modello dai dati di ingresso: Studio sul potere predittivo degli indici; Studio della metodologia per la gestione degli outliers e dei missing data Studio delle variabili qualitative nonché macroeconomiche quali input del modello MEU Sviluppi futuri: Possibilità di utilizzare/sviluppare diverse tecnologie di kernel; Determinare diverse funzioni utilità; Introduzione – DataBase - Analisi Indici – Meu – Risultati - Conclusioni