Equazioni di Maxwell 1) 2) 3) 4)

Slides:



Advertisements
Presentazioni simili
Onde elettromagnetiche 21 ottobre 2013
Advertisements

Magnetismo & Beni Culturali
Onde elettromagnetiche nel vuoto
INDUZIONE ELETTROMAGNETICA - ESPERIENZA 1
Magnetismo N S.
Acquisizione on Line di una f.e.m. indotta
Fisica 2 18° lezione.
Fisica 2 Magnetostatica
Teoria della relatività-5 17 dicembre 2012
Elettrodinamica 4 9 novembre 2012
Magnetostatica 2 15 ottobre 2012
La Teoria di Maxwell Lavoro Realizzato da Beatrice Trio a.a 2010
La Luce.
Sia data una distribuzione volumetrica di cariche elettriche ) le cariche siano in moto entro il volume in presenza di un campo elettrico ed uno magnetico.
ATTENZIONE ! per visualizzare le formule occorre avere installato l’Equation Editor di Office oppure il programmino Math Type ...
ESPERIMENTO DI FARADAY
Corso di Fisica B – C.S. Chimica
Esempio prova d'esameCorso di Fisica B, C.S.Chimica, A.A Corso di Fisica B – C.S. Chimica - Esempio di prova desame Questo è un fac-simile di.
FLUSSO DI UN VETTORE Φ(V)= S·V
Dalle equazioni di Maxwell alla relatività ristretta
Propagazione guidata Le linee ne sono un caso particolare z Superficie arbitraria uniforme in z, in grado di vincolare le onde in tale direzione n Guide.
Le Equazioni di Maxwell
Tredicesima Lezione Relazioni energetiche e Condizioni al contorno per le Equazioni di Maxwell.
Diciassettesima Lezione
IL CAMPO ELETTROMAGNETICO LENTAMENTE DIPENDENTE DAL TEMPO
ONDE ELETTROMAGNETICHE
TRASPORTO DI MOMENTO DA PARTE DI UN’ONDA E.M.
IL CAMPO ELETTROMAGNETICO RAPIDAMENTE DIPENDENTE DAL TEMPO
 RIASSUNTO DELLE PUNTATE PRECEDENTI
ACCOPPIAMENTO INDUTTIVO
Induzione Legge di Faraday E dS B x x x x x x x x x x E R B 1 E E.
Magnetismo nella materia
Fisica 2 13° lezione.
corrente di spostamento
Le onde elettromagnetiche
ELETTRICITA' E MAGNETISMO FORZE ELETTRICHE E MAGNETICHE COME
Lezione 5 Equazioni di Maxwell nel vuoto e in presenza di sorgenti.
LA NATURA DELLA LUCE E IL MODELLO ATOMICO DI BOHR
CORRENTE ELETTRICA Applicando una d.d.p. ai capi di un filo conduttore si produce una corrente elettrica. Il verso della corrente è quello del moto delle.
Verifichiamo la quarta equazione di Maxwell
Campi elettromagnetici
Campi elettromagnetici Docente:SalvatoreSavasta Anno acc. 2006/2007.
Equazioni di Maxwell nel vuoto
Equazioni di Maxwell Ludovica Battista.
11. Induzione elettromagnetica
11. Induzione elettromagnetica
12. Le equazioni di Maxwell
11. L’induzione elettromagnetica
Elettromagnetismo 11. La corrente alternata.
Esempi di campi magnetici- La Terra
Elettromagnetismo 2 – Magnetismo.
Onde elettromagnetiche nel vuoto  sono costituite da un campo elettrico e da uno magnetico in fase variabili nel tempo che si propagano in fase tra loro.
Le equazioni di Maxwell
INDUZIONE ELETTROMAGNETICA
Campi magnetici.
CAMPO MAGNETICO I campi magnetici sono generati dalle correnti elettriche. Infatti una spira circolare percorsa da corrente crea nello spazio circostante.
Induttore Dispositivo che produce un campo magnetico noto in una determinata regione. Il simbolo normalmente usato è: (ricorda il solenoide ma non lo è.
Induzione elettromagnetica
Onde e particelle: la luce e l’elettrone
Le equazioni di Maxwell
Legge di Faraday-Neumann-Lenz
Introduzione alla Storia dell’Elettromagnetismo Classico
H. h Radiazione elettromagnetica Le onde elettromagnetiche sono vibrazioni del campo elettrico e del campo magnetico; sono costituite da.
A S N B A Corrente elettrica I nel circuito: Movimento circuito: F M sulle cariche Movimento magnete: E nel filo (relatività) Stessi risultati con filo.
ELETTRICITÀ & MAGNETISMO
Unità H19 - Induzione e onde elettromagnetiche
INDUZIONE ELETTROMAGNETICA
Campo Magnetici ed Elettrici indotti. Filo percorso da corrente Un filo percorso da corrente crea intorno a se un campo magnetico B che risulta linearmente.
Transcript della presentazione:

Equazioni di Maxwell 1) 2) 3) 4) Equazione di Lorentz Unitamente alla forniscono la base teorica dell’elettromagnetismo classico Le equazioni di Maxwell prevedono l’esistenza di Radiazioni elettromagnetiche generate, per la prima volta, da Heinrich Hertz, nel 1882.

Legge di Faraday-Neumann-Lenz 3ª equazione Legge di Faraday-Neumann-Lenz Spiega il fenomeno dell’induzione magnetica: una variazione di flusso magnetico che attraversa una superficie delimitata da un circuito, genera un campo elettromotore, e quindi un corrente elettrica, nel circuito: Il segno meno davanti alla formula indica che la corrente indotta genera un campo magnetico di verso opposto al campo magnetico inducente La variazione di flusso autoconcatenato genera una corrente autoindotta:

4ª equazione Teorema di Ampere generalizzato Introdotta dallo stesso Maxwell, generalizza il teorema di Ampere, introducendo un secondo termine: Dove i s= corrente di spostamento Nel vuoto l’equazione si può scrivere: Quest’ultima è l’equazione simmetrica della 1ª equazione di Maxwell. Pertanto un campo elettrico variabile genera un campo magnetico!

Radiazioni elettromagnetiche La terza e la quarta equazione, formulate nel vuoto, affermano che una variazione di flusso del campo magnetico genera un campo elettrico e viceversa. Se, ad es., B variasse con legge sinusoidale: B = C1sen(wt), il campo elettromotore prodotto sarebbe del tipo: E = C2 cos(wt), che a sua volta genererebbe una campo del tipo B = C2sen(wt), e così via a catena .. Pertanto si forma un campo elettromagnetico ( con una componente elettrica ed una magnetica ) le cui variazioni si propagano sotto forma di onde elettromagnetiche. Si può dimostrare che per le componenti di un siffatto campo elettromagnetico dove v è la velocità di propagazione della radiazione vale la relazione: Con una elaborazione matematica delle due equazioni si giunge al risultato: e nel vuoto: cioè la velocità della luce nel vuoto ! Infatti la luce è una radiazione elettromagnetica