Scaricare la presentazione
La presentazione è in caricamento. Aspetta per favore
1
Prof. Mario Pavone - crentro di ricerca IPPARI
Teoria della Complessità: la classe NP Prof. Mario Pavone Computazione Naturale CdL Magistrale in Informatica Algoritmi Evolutivi per la Sicurezza
2
Prof. Mario Pavone - crentro di ricerca IPPARI
Bibliography Una descrizione delle classi NP-complete possono essere trovate in: M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completness, W. H. Freeman, 1st ed. (1979) Cormen, Leiserson, Rivest and Stein, Introduzione agli Algoritmi e Strutture Dati, McGraw-Hill (capitolo 34) A compendium of NP optimization problems at the link: Algoritmi Evolutivi per la Sicurezza
3
Prof. Mario Pavone - crentro di ricerca IPPARI
Search Space Given a combinatorial problem P, a search space associated to a mathematical formulation of P is defined by a couple (S,f ) where S is a finite set of configurations (or nodes or points) and f a cost function which associates a real number to each configurations of S. For this structure two most common measures are the minimum and the maximum costs. In this case we have the combinatorial optimization problems. Algoritmi Evolutivi per la Sicurezza
4
Prof. Mario Pavone - crentro di ricerca IPPARI
Example: K-SAT An instance of the K-SAT problem consists of a set V of variables, a collection C of clauses over V such that each clause c C has |c|= K The problem is to find a satisfying truth assignment for C The search space for the 2-SAT with |V|=2 is (S,f ) where S={ (T,T), (T,F), (F,T), (F,F) } and the cost function for 2-SAT computes only the number of satisfied clauses fsat (s)= #SatisfiedClauses(F,s), s S Algoritmi Evolutivi per la Sicurezza
5
Prof. Mario Pavone - crentro di ricerca IPPARI
Example: SEARCH SPACE of K-SAT Let we consider F = (A B) ( A B) A B fsat(F,s) T T 1 T F 2 F T F F Algoritmi Evolutivi per la Sicurezza
6
Prof. Mario Pavone - crentro di ricerca IPPARI
Problem: the start point PROBLEM: to refer to a question such as: "Is a given graph G=(V,E) K-colorable?" INSTANCE of a problem is a list of arguments, one argument for each parameter of the problem a problem is a binary relation on a set I of problem instances, and a set S of problem solutions: Q: I → S decision problems: Q: I → {0, 1} in general, if we can solve an optimization problem quickly, we can also solve its related decision problem quickly Algoritmi Evolutivi per la Sicurezza
7
Prof. Mario Pavone - crentro di ricerca IPPARI
Problem: the start point a problem is UNDECIDABLE if there is no algorithm that takes as input an instance of the problem and determines whether the answer to that instance is "yes" or "no" problems that are solvable by polinomial-time algorithms as being TRACTABLE; ones that require superpolynomial time as being INTRACTABLE Algoritmi Evolutivi per la Sicurezza
8
Prof. Mario Pavone - crentro di ricerca IPPARI
Problem: the start point NP-complete problems are intractable If any single NP-complete problem can be solved in polynomial time then every NP-complete problem has a polynomial-time algorithm If you can establish a problem as NP-complete you provide good evidence for its intractability You would then do better spending your time developing an approximation algorithm rather than searching for a fast algorithm that solves the problem exactly Polynomial-time solvable problems are generally regarded as tractable Algoritmi Evolutivi per la Sicurezza
9
Prof. Mario Pavone - crentro di ricerca IPPARI
Complexity Class P An algorithm solves a problem in time O(T(n)) if, when it is provided a problem instance i of length n=|i|, the algorithm can produce the solution in at most O(T(n)) time A problem is polynomial-time solvable if there exists an algorithm to solve it in time O(nk) for some constant k COMPLEXITY CLASS P: the set of decision problems that are solvable in polynomial time A function f is polynomial-time computable if there exists a polynomial-time algorithm A that, given any input x I, produces as output f(x) Algoritmi Evolutivi per la Sicurezza
10
Prof. Mario Pavone - crentro di ricerca IPPARI
Example: problem in P Dato un grafo G=(V,E) e una funzione peso sugli archi w(u,v) che specifica il costo; determinare un sottoinsieme T E di peso minimo è detto problema dell'albero di connessione minimo (Minimum Spanning Tree) Algoritmi Evolutivi per la Sicurezza
11
Prof. Mario Pavone - crentro di ricerca IPPARI
Example: problem in P Minimum Weight Spanning Tree. Input: Graph G, integer k. Decision problem: Does G have a spanning tree of weight at most k? If you are provided with a tree with weight at most k as part of the solution, the answer can be verified in O(n2) time. Algoritmi Evolutivi per la Sicurezza
12
Prof. Mario Pavone - crentro di ricerca IPPARI
Complexity Class NP Some problems are intractable: as they grow large, we are unable to solve them in reasonable time What constitutes reasonable time? Standard working definition: polynomial time On an input of size n the worst-case running time is O(nk) for some constant k Polynomial time: O(n2), O(n3), O(1), O(n lg n) Not in polynomial time: O(2n), O(nn), O(n!) Algoritmi Evolutivi per la Sicurezza
13
Prof. Mario Pavone - crentro di ricerca IPPARI
Complexity Class NP A decision problem (yes/no question) is in the class NP if it has a nondeterministic polynomial time algorithm Informally, such an algorithm: Guesses a solution (nondeterministically). Checks deterministically in polynomial time that the answer is correct. Or equivalently, when the answer is "yes", there is a certificate (a solution meeting the criteria) that can be verified in polynomial time (deterministically) The Complexity Class NP is the class of problems that can be verified by a polynomial-time algorithm If Q P then Q NP => P NP Open question is: P = NP Algoritmi Evolutivi per la Sicurezza
14
Prof. Mario Pavone - crentro di ricerca IPPARI
Nondeterminism Think of a non-deterministic computer as a computer that magically “guesses” a solution, then has to verify that it is correct If a solution exists, computer always guesses it One way to imagine it: a parallel computer that can freely spawn an infinite number of processes Have one processor work on each possible solution All processors attempt to verify that their solution works If a processor finds it has a working solution So: NP = problems verifiable in polynomial time Algoritmi Evolutivi per la Sicurezza
15
Prof. Mario Pavone - crentro di ricerca IPPARI
Review: P and NP Summary so far: P = problems that can be solved in polynomial time NP = problems for which a solution can be verified in polynomial time Unknown whether P = NP (most suspect not) Hamiltonian-cycle problem is in NP: Cannot solve in polynomial time Easy to verify solution in polynomial time Algoritmi Evolutivi per la Sicurezza
16
Hamiltonian Cycle Problem
Prof. Mario Pavone - crentro di ricerca IPPARI Hamiltonian Cycle Problem A hamiltonian cycle of an undirected graph G=(V,E) is a simple cycle that contains each vertex in V. A graph that contains a hamiltonian cycle is said to be hamiltonian NOT ALL GRAPHS ARE HAMILTONIAN Hamiltonian-cycle problem: “Does a graph G have a hamiltonian cycle?” What is the running time of this algorithm? There are m! possible permutations of the vertices Algoritmi Evolutivi per la Sicurezza
17
Prof. Mario Pavone - crentro di ricerca IPPARI
Hamiltonian Cycle Problem Hamiltonian Cycle (input: a graph G) Does G have a Hamiltonian cycle? Solution: 0, 1, 2, 11, 10, 9, 8, 7, 6, 5, 14, 15, 6, 17, 18, 19, 12, 13, 3, 4 Algoritmi Evolutivi per la Sicurezza
18
Hamiltonian Cycle Problem
Prof. Mario Pavone - crentro di ricerca IPPARI Hamiltonian Cycle Problem algorithm: lists all permutations of the vertices and check each permutation to see if it is a hamiltonian path there are m! Possible permutations of the vertices CHECK if the provided cycle is hamiltonian: if it is a permutation of the vertices of V and each consecutive edges along the cycle exists in the graph This verification can be implemented to run in O(n2) time => a hamiltonian cycle exists in a graph can be verified in polynomial time n is the lenght of the econding of G Algoritmi Evolutivi per la Sicurezza
19
Prof. Mario Pavone - crentro di ricerca IPPARI
NP-Complete Problems The NP-Complete problems are an interesting class of problems whose status is unknown No polynomial-time algorithm has been discovered for an NP- Complete problem No suprapolynomial lower bound has been proved for any NP- Complete problem, either We call this the P = NP open question The biggest open problem in CS Algoritmi Evolutivi per la Sicurezza
20
Prof. Mario Pavone - crentro di ricerca IPPARI
NP Complete Problems The class of problems in NP which are the “hardest” are called the NP-complete problems A problem Q in NP class is NP-complete problem if the existence of a polynomial time algorithm for Q implies the existence of a polynomial time algorithm for all problems in NP Steve Cook in 1971 proved that SAT is NP-complete. Other problems: use reductions. Algoritmi Evolutivi per la Sicurezza
21
Prof. Mario Pavone - crentro di ricerca IPPARI
NP-Complete Problems NP-Complete problems are the “hardest” problems in NP: If any one NP-Complete problem can be solved in polynomial time… …then every NP-Complete problem can be solved in polynomial time… …and in fact every problem in NP can be solved in polynomial time (which would show P = NP) Thus: solve hamiltonian-cycle in O(n100) time, you’ve proved that P = NP. Retire rich & famous. Algoritmi Evolutivi per la Sicurezza
22
Prof. Mario Pavone - crentro di ricerca IPPARI
Reduction The crux of NP-Completeness is reducibility Informally, a problem P can be reduced to another problem Q if any instance of P can be “easily rephrased” as an instance of Q, the solution to which provides a solution to the instance of P What do you suppose “easily” means? This rephrasing is called transformation Intuitively: If P reduces to Q, P is “no harder to solve” than Q Algoritmi Evolutivi per la Sicurezza
23
Prof. Mario Pavone - crentro di ricerca IPPARI
Reducibility An example: P: Given a set of Booleans, is at least one TRUE? Q: Given a set of integers, is their sum positive? Transformation: (x1, x2, …, xn) = (y1, y2, …, yn) where yi = 1 if xi = TRUE, yi = 0 if xi = FALSE Another example: Solving linear equations is reducible to solving quadratic equations Given an instance ax+b=0, we transform it to 0x2+ax+b=0 Algoritmi Evolutivi per la Sicurezza
24
Prof. Mario Pavone - crentro di ricerca IPPARI
Using Reductions If P is polynomial-time reducible to Q, we denote this P p Q Definition of NP-Complete: If P is NP-Complete, P NP and all problems R are reducible to P Formally: R p P R NP If P p Q and P is NP-Complete, Q is also NP-Complete Polynomial-time reductions provide a formal means for showing that one problem is at least as hard as another, to within a polynomial factor. Algoritmi Evolutivi per la Sicurezza
25
Prof. Mario Pavone - crentro di ricerca IPPARI
NP-Completeness If P p Q then P is not more than a polynomial factor harder than Q A problem P is NP-Complete if P NP, and P' p P, for every P' NP If all problems Q NP are reducible to P, then we say that P is NP-Hard A problem P is NP-Complete if it is in the NP class and is NP-Hard (P is NP-Hard and P NP) Algoritmi Evolutivi per la Sicurezza
26
Why Prove NP-Completeness?
Prof. Mario Pavone - crentro di ricerca IPPARI Why Prove NP-Completeness? Though nobody has proven that P != NP, if you prove a problem NP-Complete, most people accept that it is probably intractable Therefore it can be important to prove that a problem is NP- Complete Don’t need to come up with an efficient algorithm Can instead work on approximation algorithms Algoritmi Evolutivi per la Sicurezza
27
Proving NP-Completeness
Prof. Mario Pavone - crentro di ricerca IPPARI Proving NP-Completeness What steps do we have to take to prove a problem P is NP- Complete? Pick a known NP-Complete problem Q Reduce Q to P Describe a transformation that maps instances of Q to instances of P, s.t. “yes” for P = “yes” for Q Prove the transformation works Prove it runs in polynomial time Oh yeah, prove P NP (What if you can’t?) Algoritmi Evolutivi per la Sicurezza
28
Prof. Mario Pavone - crentro di ricerca IPPARI
Teorema Definizione Un problema B é detto NP-completo se: B NP ANP vale che A≤PB Teorema Se B é un problema NP-completo tale che B≤PC, per qualche problema C, allora C é NP-hard. Se poi C ∈ NP, allora vale anche che C é NP-completo. Algoritmi Evolutivi per la Sicurezza
29
Prof. Mario Pavone - crentro di ricerca IPPARI
SAT Problem Definiamo: Una variabile é un elemento di {x1, x2, , xn} Un letterale é una variabile xi o il suo negato Una clausola é una disgiunzione di k letterali C = Una formula booleana é una congiunzione di clausole cfn = forma normale congiunta PROBLEMA: Soddisfacibilità (SAT) ISTANZA: Una formula booleana DOMANDA: Esiste una assegnazione di valori di verità alle variabili di che rendono vera? Algoritmi Evolutivi per la Sicurezza
30
Prof. Mario Pavone - crentro di ricerca IPPARI
ESEMPIO: La formula é soddisfacibile, semplicemente ponendo x1=1, x2=0, e x3=0. Infatti La seguente formula, invece, non é soddisfacibile (provare tutte le 8 possibile assegnazioni di verità) Algoritmi Evolutivi per la Sicurezza
31
Prof. Mario Pavone - crentro di ricerca IPPARI
TEOREMA DI COOK-LEVIN SAT è NP-Completo Dimostrazione In breve, il teorema di Cook-Levin fa vedere che: – il problema SAT in NP può essere deciso da un opportuno modello di calcolo: la Macchina di Turing non Deterministica (NTM) – data la descrizione di una NTM n e un input w per n, si può costruire una espressione in forma normale congiuntiva w che è soddisfacibile se e solo se l'output di n su input w è accettante – la lunghezza della formula w è polinomiale in |n| e in |w| Algoritmi Evolutivi per la Sicurezza
32
Prof. Mario Pavone - crentro di ricerca IPPARI
PRIMO ESEMPIO: 3SAT 3SAT é analogo al problema della soddisfacibilitá di formule booleane (SAT), con però la restrizione che ogni clausola della formula ha al piú 3 letterali. Teorema 3SAT é NP-completo Dimostrazione: Proveremo che 3SAT ∈ NP, successivamente proveremo che SAT ≤P 3SAT. Dal Teorema 1 discenderà che 3SAT é NP-completo. Per mostrare che 3SAT ∈ NP, osserviamo che un certificato (prova) consiste di una assegnazione di valori di verità alle variabili di una formula può essere facilmente verificata in tempo polinomiale. La verifica infatti consiste nel sostituire i valori all’interno della formula e controllare il risultato che vien fuori. Algoritmi Evolutivi per la Sicurezza
33
Prof. Mario Pavone - crentro di ricerca IPPARI
SECONDO ESEMPIO: CLIQUE ISTANZA: Un grafo G = (V, E) ed un intero k DOMANDA: G ha una clique di taglia k? (ovvero ∃ V’⊆ V, |V’| = k, tale che ∀u, v ∈ V’, u v vale che (u, v) ∈ E) Teorema CLIQUE é NP-completo Dimostrazione Proveremo che CLIQUE ∈ NP, successivamente proveremo che 3SAT ≤P CLIQUE. Dal Teorema 1 discenderà che CLIQUE é NP-completo. Un algoritmo di verifica per il problema CLIQUE é il seguente: avendo in input la coppia (G, k) e come certificato un sottoinsieme X ⊆ V , con |X| = k (potenziale soluzione al problema CLIQUE), l’algoritmo controlla tutte le coppie di vertici (u, v), con u, v ∈ X, u v, e produce in output SI se e solo se ciascuna di queste coppie é connessa da un arco di E. Il tempo di esecuzione dell’algoritmo é O(n2), se n = |V |. Algoritmi Evolutivi per la Sicurezza
34
Prof. Mario Pavone - crentro di ricerca IPPARI
3SAT ≤P CLIQUE Sia = una istanza di 3SAT in una istanza (G , k) di Clique come segue: Per ogni letterale scriviamo un nodo Colleghiamo tutti i nodi ad eccezione: Nodi nella medesima clausola Nodi che rappresentano letterali opposti Algoritmi Evolutivi per la Sicurezza
35
Prof. Mario Pavone - crentro di ricerca IPPARI
ESEMPIO Algoritmi Evolutivi per la Sicurezza
36
Prof. Mario Pavone - crentro di ricerca IPPARI
TERZO ESEMPIO: VERTEX-COVER ISTANZA: Un grafo G = (V,E) ed un intero k DOMANDA: esiste V ′ ⊆ V , |V ′| = k, tale che ∀ (u, v) ∈ E o vale che u ∈ V ′ oppure v ∈ V ′? Teorema Vertex-Cover é NP-completo Dimostrazione Proveremo che Vertex-Cover ∈ NP, successivamente proveremo che 3SAT ≤P Vertex-Cover. Dal Teorema 1 discenderà che Vertex-Cover é NP-completo. Che il problema VERTEX COVER sia in NP é ovvio. Un algoritmo di verifica prende in input l’istanza di input (G, k) ed un certificato V ′ ⊆ V ,|V ′| = k, e controlla se ∀(u, v) ∈ E vale che u ∈ V ′ oppure che v ∈ V ′. Il controllo può essere fatto in tempo O(n2). Algoritmi Evolutivi per la Sicurezza
37
Prof. Mario Pavone - crentro di ricerca IPPARI
3SAT ≤P VERTEX-COVER Per ogni variabile xi associamo una coppia di nodi collegati da un arco Per ogni clausola associamo 3 nodi mutuamente legati da un arco Per ogni letterale identico tra clausola e coppia si metta un arco. Se consta di m variabili e t clausole G consterà di 2m+3t nodi. Sia k=m+2t xi xi-1 xi+1 Algoritmi Evolutivi per la Sicurezza
Presentazioni simili
© 2024 SlidePlayer.it Inc.
All rights reserved.