Scaricare la presentazione
La presentazione è in caricamento. Aspetta per favore
PubblicatoLuigino Baroni Modificato 11 anni fa
1
Counterfactuals and Causal Inference by Stephen Morgan & Christopher Winship Barbara Befani & Alessandra Decataldo presentano Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
2
Introduzione Logica della valutazione o metodo di attribuzione causale utile quando si devono gestire grandi numeri? Concentrazione del valore dellintervento su ununica variabile risultato quantitativa Logica di base dellattribuzione causale LOPC (Lista di cause possibili) GEM (Metodo generale di eliminazione) Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
3
Introduzione (2) Per attribuire la causalità ci sono almeno otto metodi tutti altrettanto validi che si applicano a seconda delle diverse situazioni: (i) osservazione diretta (visiva, tattile) (ii) osservazione riportata (studi di caso) (iii) inferenza eliminativa (autopsia, guasto meccanico) (iv) inferenza teorica, basata sull'uso di una teoria o di un'analogia, es. fisica, geologia, astronomia (v) manipolazione diretta (es. in cucina o in laboratorio) (vi) esperimenti naturali (metereologia, epidemiologia) (vii) quasi-esperimenti (medicina, pedagogia) (viii) RCTs randomizzazione, assegnazione casuale (farmacologia) Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
4
Introduzione (3) Domande in merito ai rapporti di causa-effetto sono frequentemente allorigine di molti lavori empirici nelle scienze sociali. Altrettanto frequentemente, però, non è possibile fornire una risposta a tali domande a causa delle difficoltà che gli scienziati sociali incontrano nel raccogliere dati. Negli ultimi tre decenni è stato sviluppato un modello controfattuale della causalità che ha permesso di diffondere una cornice unificata per gli studi sui rapporti causa-effetto. Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
5
Il modello controfattuale per lanalisi dei dati osservativi Il modello controfattuale suppone che in una popolazione ogni individuo possa essere esposto a due stati alternativi di una causa (detti trattamenti alternativi; se si considerano solo due stati, essi vengono definiti trattamento e controllo). Ogni stato è caratterizzato da un distinto gruppo di condizioni; essere esposto a tali condizioni potenzialmente produce un risultato di interesse. Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
6
Il modello controfattuale per lanalisi dei dati osservativi (2) Ogni individuo nella popolazione di interesse ha un risultato potenziale sotto ogni stato di trattamento, ma ogni individuo può essere osservato solo in uno specifico stato in un determinato momento. I potenziali risultati di ogni individuo sono definiti come i veri valori del risultato di interesse che risulterebbe dallesposizione agli stati causali alternativi. Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
7
Il modello controfattuale per lanalisi dei dati osservativi (3) I potenziali risultati di un individuo i sono: y i 1 nel caso di stato di trattamento y i 0 nel caso di stato di controllo Poiché in teoria sia y i 1 sia y i 0 esistono per ogni individuo, leffetto causale a livello individuale può essere definito come la semplice differenza y i 1 - y i 0 Ma gli effetti causali non possono essere calcolati a livello individuale poiché non è possibile osservare y i 1 e y i 0 per ogni individuo della popolazione di interesse. Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
8
Il modello controfattuale per lanalisi dei dati osservativi (4) Necessariamente, un ricercatore deve analizzare una variabile Y (risultato osservato), che ha valori y i per ogni individuo i uguali a: y i 1 per tutti gli individui del gruppo di trattamento y i 0 per tutti gli individui del gruppo di controllo Concordemente: y i 0 è un risultato controfattuale non osservato per ogni individuo i del gruppo di trattamento y i 1 è un risultato controfattuale non osservato per ogni individuo i del gruppo di controllo Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
9
Il modello controfattuale per lanalisi dei dati osservativi (5) Nella tradizione della modellizzazione controfattuale, lattenzione è focalizzata sullo stimare gli effetti causali medi, analizzando i valori y i di gruppi di individui definiti da specifiche caratteristiche. Per fare ciò, il processo attraverso il quale individui di differenti tipi sono esposti alla causa di interesse deve essere modellizzato. Questo implica lintroduzione di assunzioni per la stima di valori controfattuali non osservabili medi per specifici gruppi di individui. Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
10
Tipi di esempio usati nel libro Gli autori riportano, successivamente, tre esempi (gli effetti causali dellesperienza familiare e dellintelligenza sul risultato scolastico; gli effetti causali del risultato scolastico e dellabilità mentale sui guadagni; gli effetti causali dellesperienza familiare, del risultato scolastico e dei guadagni sulla partecipazione politica), che pongono alcune fondamentali sfide per lanalisi causale: 1) le complicazioni della misurazione, ossia le variabili causali sono molto astratte e internamente eterogenee; 2) le variabili individuali non sono facilmente manipolabili attraverso lintervento esterno. Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
11
Tipi di esempio usati nel libro (2) Gli autori riportano, inoltre, quattro esempi (gli effetti causali della scolarizzazione cattolica sullapprendimento; gli effetti causali dei buoni scolastici sullapprendimento; gli effetti causali della formazione alla manodopera sui guadagni; gli effetti causali della tecnologia alternativa di voto sul votare validamente), che mostrano una diretta relazione causale. Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
12
Dati osservativi e ricerche campionarie Gli autori specificano che, nel corso del testo, si assume soventemente che il campione sia infinito (al fine di considerare come pari a 0 lerrore di campionamento e che la media campionaria di una variabile osservata sia uguale a quella della popolazione) e che le variabili siano state misurate senza errori. Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
13
Leffetto netto medio E(δ) = E(Y 1 - Y 0 ) 1^ problema: ununica variabile quantitativa 2^ problema: valore atteso di una variabile aleatoria, stimato per tutta la popolazione a partire da un campione Metodi di inferenza statistica -> calcolo delle probabilità -> funzioni generalmente continue -> unità su cui ragioniamo sono infinitesimali, numeri reali leffetto individuale NON è osservabile e non solo perché è controfattuale leffetto non è osservabile non solo per un individuo della popolazione, ma neanche per qualsiasi insieme finito di individui; leffetto può essere stimato solo per un insieme infinito di individui, quello della popolazione teorica Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
14
Due ordini di inosservabilità ricostruzione del dato controfattuale per il quale non cè un chiaro referente empirico, ci sono elevati margini di discrezionalità Per i dati cosiddetti osservabili – per i quali il campione è un chiaro referente empirico – dobbiamo però fare le ipotesi di rappresentatività del campione Randomizzazione, lo estraiamo in maniera casuale e ci assicuriamo che sia di numerosità sufficientemente elevata Lo stratifichiamo, introducendo ipotesi teoriche Senza queste cautele, le unità su cui ragioniamo sono astratte: ovvero talmente piccole da essere infinitesimali, su ognuna di loro leffetto è talmente piccolo da essere prossimo allo zero, e nessuna somma di un numero finito di infinitesimi è diversa da un infinitesimo… per fortuna è lunico metodo EVIDENCE-BASED! Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
15
Confronto tra metodi qualitativi e quantitativi Metodi qualitativi sono imprecisi, inaffidabili, distorti, etc Metodi quantitativi (continui, che usano numeri reali) ragionano su entità che non esistono nella realtà Quando sono applicati male, se i metodi qualitativi sono un difetto della vista, i metodi quantitativi sono una forma di cecità Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
16
E(δ) = E(Y 1 ) - E(Y 0 ) Y 1 = valore della variabile sullintera popolazione (umana, mondiale, infinita – v.a.) nel caso in cui sia sottoposta a trattamento. Y 0 = valore della variabile sullintera popolazione (umana, mondiale, infinita – v.a.) nel caso in cui NON sia sottoposta a trattamento Notazione: Y 1 = Y se D = 1; Y 0 = Y se D = 0 D variabile discreta (0,1) indica la presenza / assenza del trattamento δ = (Y 1 - Y 0 ); E(δ) = E(Y 1 - Y 0 ) = E(Y 1 ) - E(Y 0 ) Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
17
Lo stimatore ingenuo delleffetto netto medio δ NAIVE = media (y | d = 1) - media (y | d = 0) SE IL CAMPIONE E RAPPRESENTATIVO O CASUALE: n -> inf., δ NAIVE -> E(Y 1 |D=1) - E(Y 0 |D=0) diverso dalleffetto netto medio nellintera popolazione E(δ) = E(Y 1 ) - E(Y 0 ) quindi δ NAIVE È DISTORTO (dist. non campionaria) Leffetto netto medio totale = leffetto netto medio sulla popolazione rappresentata dai trattati + leffetto netto medio sulla popolazione rappresentata dai NON trattati E(δ) = π * E(δ|D=1) + (1-π) * E(δ|D=0) π = proporzione di popolazione che tipicamente viene selezionata o si autoseleziona al trattamento Se queste due quantità sono uguali no problem, coincidono con leffetto medio netto; ma lidea è che in realtà la popolazione sottoposta al trattamento sia sostanzialmente diversa da quella non sottoposta, in particolare rispetto a caratteristiche che influenzano autonomamente il valore di y Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
18
Non esiste IL controfattuale: esistono DUE tipi di controfattuale Per stimare leffetto medio netto devo stimare DUE diversi effetti medi netti (almeno quando sono interessata a tutta la popolazione e non solo quella rappresentata da uno dei due sottogruppi) E(δ|D=1) = E[(Y 1 -Y 0 )|D=1] = E(Y 1 |D=1) - E(Y 0 |D=1) E(δ|D=0) = E[(Y 1 -Y 0 )|D=0] = E(Y 1 |D=0) - E(Y 0 |D=0) E(δ) = π*E(Y 1 |D=1) - π*E(Y 0 |D=1) + E(Y 1 |D=0) - π*E(Y 1 |D=0) - E(Y 0 |D=0) +π*E(Y 0 |D=0) E(δ) = (π-1)*E(Y 0 |D=0) + π*E(Y 1 |D=1) + (1- π)*E(Y 1 |D=0) - π*E(Y 0 |D=1) Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
19
Lo stimatore ingenuo (2) Media campionaria di y 1 -> E(Y 1 |D=1) Media campionaria di y 0 -> E(Y 1 |D=0) Se il campione è casuale (randomizzazione) o rappresentativo (introdurre stratificazioni cioè ipotesi causali) le quantità in giallo non sono osservabili NEANCHE a livello campionario; cioè non hanno un corrispondente campionario diretto; per stimarle non mi basta fare ipotesi statistico- probabilistiche; devo fare ipotesi di altro tipo (di social science theory) Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
20
Esempio: effetto dellistruzione universitaria sul successo nel mercato del lavoro Mi interessa conoscere la differenza tra il successo sul MdL dellumanità nel caso in cui tutti frequentassero luniversità e il successo sul MdL dellumanità nel caso in cui nessuno frequenti luniversità Nella realtà io ho 2 gruppi, coloro che frequentano luniversità e coloro che non la frequentano e osservo determinati risultati E(Y 1 |D=1) = 10; E(Y 0 |D=0) = 5 E(Y 0 |D=1) = 6; E(Y 1 |D=0) = 8 δ NAIVE = (10-5) = 5; diff. baseline = (6-5) = 1; effetto medio sui tendenti al tratt. = (10-6) = 4; effetto medio sui non tendenti al tratt. = (8-5) = 3; diff effetti medi tra i due gruppi = diff tra i tassi di acquisizione di capacità lavorative in seguito alluniversità = (4-3) = 1; supponiamo che π = 0,3 E(δ) = 5 - 1 - (1-0,3)*1 = 5-1-0,7 = 3,3 Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
21
Come eliminare la distorsione dello stimatore ingenuo lo stimatore ingenuo è distorto e quindi va corretto δ NAIVE -> E(Y 1 |D=1) - E(Y 0 |D=0) E(δ) - δ NAIVE = distorsione dello stimatore ingenuo Distorsione dello stimatore ingenuo = E(Y 0 |D=1) - E(Y 0 |D=0) + (π-1)*[E(δ|D=1) - E(δ|D=0)] differenza baseline, differenza di partenza, prima o in assenza del trattamento, tra coloro che si selezionano per il trattamento e coloro che non si selezionano differenza tra gli effetti medi dellintervento sulle due popolazioni, indipendente dalle (differenze nelle) condizioni di partenza Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
22
Come eliminare la distorsione dello stimatore ingenuo (2) Devo riuscire a stimare la distorsione; una strategia tipica è cercare di azzerarla Azzerare le differenze di partenza / baseline Azzerare le differenze di effetto netto del trattamento, di acquisizione dei benefici del trattamento (se le diff di baseline sono nulle ciò equivale ad azzerare le diff di arrivo) Ipotesi 1: E(Y 0 |D=1) = E(Y 0 |D=0) (diff di partenza / baseline NULLE) il valore della variabile in ASSENZA di trattamento deve essere uguale tra coloro che tendono a essere trattati e coloro che tendono a non essere trattati E(δ|D=1) = E(δ|D=0); E[(Y 1 - Y 0 )|D=1] = E[(Y 1 - Y 0 )|D=0]; E(Y 1 |D=1) - E(Y 0 |D=1) = E(Y 1 |D=0) - E(Y 0 |D=0); E(Y 1 |D=1) = E(Y 1 |D=0) Ipotesi 2: E(Y 1 |D=1) = E(Y 1 |D=0) (differenza tra effetti lordi a parità di baseline = differenza tra effetti netti) Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
23
Randomizzazione (RCTs) Y e D sono indipendenti per costruzione, non cè autoselezione / selezione spontanea dei trattati Anche se, si fa presto a dire costruzione: campioni di numerosità elevata e cmq devo sempre fare test di casualità Conseguenza auspicata 1: E(Y 0 |D=1) = E(Y 0 |D=0) Conseguenza auspicata 2: E(Y 1 |D=1) = E(Y 1 |D=0) Dinamica durante lesperimento Il campione può non essere più casuale per: Possono cambiare le caratteristiche dei gruppi durante lesperimento Uscita dal gruppo (diversa tra i due gruppi - differential attrition) (anche per il matching) Cross-contamination (i non trattati imitano i trattati) Hawthorne effect (la consapevolezza di appartenere a un certo gruppo modifica il comportamento) Doppio cieco (ignoranza del partecipante e di chi somministra) (certo questo è molto più facile in farmacologia…) Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
24
Regressione Stimare leffetto di D per esclusione, calcolando leffetto di TUTTE le altre variabili causali e sottraendolo alleffetto complessivo In particolare stimo il valore della diff di partenza / baseline E(Y 0 |D=1) - E(Y 0 |D=0) e la diff tra gli effetti medi [E(δ|D=1) - E(δ|D=0)] in questo modo, insieme a δ NAIVE, riesco a stimare E(δ) Il problema è che mi servono informazioni TEORICHE su cosa causa il fenomeno rappresentato dalla variabile di interesse; in particolare su TUTTE LE sue CAUSE: in altre parole, mi serve tutta la teoria del mondo (vedi esempio di REGRESSIONE semplice di Trivellato: non si capisce bene la differenza tra gli effetti: quali sono le due popolazioni? Dove sono i due controfattuali?) Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
25
Serie storiche Interventi in cui tutta la popolazione è esposta al trattamento (dati PRE/POST) Dinamica spontanea dei fenomeni (rilevanti: tonnellate di ipotesi teoriche…) fa sì la che popolazione di arrivo non sia la stessa rispetto a quella di partenza; conosco E(Y 1 |D=1) e E(Y 0 |D=0) ma non conosco E(Y 1 |D=0) né E(Y 0 |D=1) effetto della politica al tempo t 0 sulla popolazione / contesto di partenza ciò che si sarebbe avuto nel contesto / popolazione di arrivo al tempo t 1 in assenza di intervento le serie storiche stimano la seconda quantità ma non la prima; solo la prima parte della distorsione dallo stimatore ingenuo; in altre parole leffetto relativo al contesto di arrivo E(δ|D=1) = E[(Y 1 -Y 0 )|D=1] = E(Y 1 |D=1) - E(Y 0 |D=1) Limite perché quello che mi interessa è leffetto netto di quella politica rispetto a qualsiasi contesto, non solo a quelli che somigliano a quello di arrivo Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
26
Costruire un gruppo di controllo tramite matching Per rendere comparabili i due gruppi si costruisce un gruppo di controllo in cui ogni componente ha un corrispondente nel gruppo sperimentale Matching rispetto a cosa? Come faccio a sapere quali sono le variabili causalmente rilevanti? Mi serve tanta teoria Il gruppo di controllo somiglia ai trattati! Mi serve per stimare E(Y 0 |D=1), quindi E(δ|D=1), ovvero leffetto netto medio sulla popolazione di cui sono rappresentativi i trattati, non su tutta Per stimare E(δ|D=0) (e quindi leffetto complessivo) ma mi manca ancora il secondo controfattuale: E(Y 1 |D=0) come per le serie storiche: è un limite importante nel caso in cui lobiettivo sia indurre un effetto su una pluralità di gruppi e contesti spazio-temporali, non solo su (quelli che somigliano a) i trattati o su un contesto storico preciso A volte non riesco a fare il matching neanche dei trattati perché non esistono individui comparabili con tutti i trattati… Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
27
Il modello controfattuale per lanalisi dei dati osservativi (6) Se le assunzioni sono sostenibili e il metodo adatto per costruire una differenza media dai dati è chiuso, allora può essere data uninterpretazione causale alla differenza media nel valori di y i. Successivamente gli autori presentano una storia selezionata delluso del linguaggio sperimentale nelle scienze sociali. In particolare, ricostruiscono luso dei termini: Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
28
Analisi causale e scienze sociali osservative 1) esperimento (Fisher, Cox e Reid, Stouffer, Chapin, Campbell) poiché il modello controfattuale della causalità aiuta il ricercatore a stipulare le assunzioni, valutare tecniche alternative di analisi dei dati e riflettere sul processo di esposizione causale. Il suo successo è dovuto al suo linguaggio di risultati potenziali, che permette allanalista di concettualizzare gli studi osservativi come se fossero disegni sperimentali. 2) Regressione (Balock, Duncan) poiché essa può lavorare in modo abbastanza sensibile nel cercare risposte a domande causali. Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
29
La rappresentazione grafica della relazione causale Pearl (2000) ha sviluppato una serie di regole per rappresentare le relazioni causali con la teoria dei grafici. Si consideri le relazioni causali rappresentate a p. 25 e si supponga che queste relazioni siano derivate da un gruppo di proposizioni teoriche. In questo grafico: 1) ogni nodo rappresenta una variabile casuale osservabile; Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
30
La rappresentazione grafica della relazione causale (2) 2) ogni freccia unidirezionale significa che la variabile allorigine della freccia causa quella alla fine della freccia; 3) ogni freccia curva e bidirezionale significa lesistenza di un nodo comune non osservato che causa entrambe le variabili poste allestremità. Supponiamo che la variabile di primario interesse sia D e che leffetto causale che desideriamo stimare sia leffetto di D su Y. Secondo Pearl, la variabile causale D ha una distribuzione di probabilità. Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
31
La rappresentazione grafica della relazione causale (3) Sulla variabile D agiscono causalmente le variabili A, B e C, anche se dal grafico non si evince la forza della relazione. La variabile risultato Y è causata direttamente da F, G e D, ma anche da altre cause indirette (A, B e C) ed altre ancora implicite (rappresentate dalle frecce curvilinee) che determinano la distribuzione di probabilità di Y. Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
32
Le strategie per stimare gli effetti causali Tre strategie per stimare gli effetti causali: 1) si può condizionare (con procedure come la stratificazione, il confronto, la ponderazione o la regressione) le variabili che blocchino tutte le traiettorie back-door dalla variabile causale alla variabile risultato; 2) si possono utilizzare variazioni esogene in una appropriata variabile strumento per isolare la covariazione fra le variabili causale e risultato; 3) si può stabilire un meccanismo isolato ed esaustivo che relaziona la variabile causale alla variabile risultato e calcolare come leffetto causale si sia propagato attraverso il meccanismo. Barbara Befani e Alessandra Decataldo, Ciclo di Seminari sui Classici della Valutazione, Roma 7 Aprile 2009
Presentazioni simili
© 2025 SlidePlayer.it Inc.
All rights reserved.