La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Introduzione alla sistematica vegetale Alcune riflessioni evolutive

Presentazioni simili

Presentazione sul tema: "Introduzione alla sistematica vegetale Alcune riflessioni evolutive"— Transcript della presentazione:

1 Introduzione alla sistematica vegetale Alcune riflessioni evolutive
Corso di fitoterapia Introduzione alla sistematica vegetale Alcune riflessioni evolutive

2 Le alghe Sono i più antichi rappresentanti del regno
Interam. legati mondo acquatico Ambiente acquatico: solubilità gas / sali min. Sostegno Rende superflui strutture specializzate Corpo semplificato (senza organo e/o tessuti spec Pianto a tallo – a cormo

3 Ambiente favorevole Ambiente favorevole  poco selettivo  molte varietà di forme (per diversi aspetti e a differenti livelli Forma generale dell’organismo Struttura dei cloroplasti Modalità riproduttive Alghe unicellulari (protisti)  diversi processi evolutivi  alghe pluricellulari Tipologia: Alghe filamentose – laminari - frondose

4 Il cloroplasta delle alghe
Contiene clorofilla e altri pigmenti fotosintetici che talvolta mascherano il colore verde In base al colore assunto vengono classificate in alghe verdi – alghe rosse – alghe brune  Perché?

5 Acqua e luce Più la luce penetra in profondità tanto maggiore l’assorbimento

6 alghe verdi: clorofilla Alghe brune: clorofilla + ficoxantina
penetrazione media: radiazioni giall- arancione Alghe rosse: clorofilla + ficoeritrina max penetrazione: radiazioni verde-azzurre

7 Pigmenti nelle alghe DIVISION COMMON NAME MAJOR ACCESSORY PIGMENT  Chlorophyta Green algae chlorophyll b Charophyta Charophytes Euglenophyta Euglenoids Phaeophyta Brown algae chlorophyll c1 + c2, fucoxanthin Chrysophyta Yellow-brown or golden-brown algae Pyrrhophyta  Dinoflagellates chlorophyll c2, peridinin Cryptophyta Cryptomonads chlorophyll c2, phycobilins Rhodophyta Red algae phycoerythrin, phycocyanin Cyanophyta Blue-green algae phycocyanin, phycoerythrin

8 Storia evolutiva Alghe rosse 6000 specie Alghe brune 2000 specie
Alghe verdi The lineage of algae according to Thomas Cavalier-Smith. The exact number and placement of endosymbiotic events is currently unknown, so this diagram can be taken only as a general guide[1][2] It represents the most parsimonious way of explaining the three types of endosymbiotic origins of plastids. These types include the endosymbiotic events of cyanobacteria, red algae and green algae, leading to the hypothesis of the supergroups Archaeplastida, Chromalveolata and Cabozoa respectively. However, the monophyly of Cabozoa has been refuted and the monophylies of Archaeplastida and Chromalveolata are currently strongly challenged. Endosymbiotic events are noted by dotted lines. Fonte: Wikipedia origine delle Algae

9 Usi pratici delle alghe

10 Le briofite Sono le piante terrestri più antiche
Piante a tallo di piccole dimensioni Fusticino – foglioline – sottili filamenti (per ancoraggio) Nessun tessuto specializzato ne un t. conduttore – ne una cuticola impermeabile Grande diffusione sulla terraferma (prob. per mancanza di concorrenza) Piante “pioniere” formano humus adatto a piante a cormo

11 Le Briofite

12 Le pteridofite Filo conduttore nella storia evolutiva
Tendenza ad espandersi sulla Terraferma  favoriti da ambienti nuovi (non sfruttati privi di concorrenza) Adattamento lento e graduale (impossibile se presenti specie adattate all’ambiente) Pteridofite (->inizio più diffic.) Competizione con briofite + adatte ai nuovi ambienti -> affrontare problemi che le br. avevano eluso: svilupparsi in altezza e superficie + sfruttare in pieno i vantaggi della vita subaerea

13 Relazioni evolut. insetti - piante
Plant defense against herbivory From Wikipedia, the free encyclopedia   (Redirected from Plant defense) Poison ivy produces urushiol to protect the plant from herbivores. In humans this chemical produces an allergic skin rash, known as urushiol-induced contact dermatitis. Foxgloves produce several deadly chemicals, namely cardiac and steroidal glycosides. Ingestion can cause nausea, vomiting, hallucinations, convulsions, or death. Plant defense against herbivory or host-plant resistance (HPR) describes a range of adaptations evolved by plants which improve their survival and reproduction by reducing the impact of herbivores. Plants use several strategies to defend against damage caused by herbivores. Many plants produce secondary metabolites, known as allelochemicals, that influence the behavior, growth, or survival of herbivores. These chemical defenses can act as repellents or toxins to herbivores, or reduce plant digestibility. Other defensive strategies used by plants include escaping or avoiding herbivores in time or in place, for example by growing in a location where plants are not easily found or accessed by herbivores, or by changing seasonal growth patterns. Another approach diverts herbivores toward eating non-essential parts, or enhances the ability of a plant to recover from the damage caused by herbivory. Some plants encourage the presence of natural enemies of herbivores, which in turn protect the plant. Each type of defense can be either constitutive (always present in the plant), or induced (produced in reaction to damage or stress caused by herbivores). Historically, insects have been the most significant herbivores, and the evolution of land plants is closely associated with the evolution of insects. While most plant defenses are directed against insects, other defenses have evolved that are aimed at vertebrate herbivores, such as birds and mammals. The study of plant defenses against herbivory is important, not only from an evolutionary view point, but also in the direct impact that these defenses have on agriculture, including human and livestock food sources; as beneficial 'biological control agents' in biological pest control programs; as well as in the search for plants of medical importance. Contents [show] [edit] Evolution of defensive traits Timeline of plant evolution and the beginnings of different modes of insect herbivory Main article: Evolutionary history of plants The earliest land plants evolved from aquatic plants around 450 million years ago (Ma) in the Ordovician period. These early land plants had no vascular system and required free water for their reproduction. Vascular plants appeared later and their diversification began in the Devonian era (about 400 Ma). Their reduced dependence on water resulted from adaptations such as protective coatings to reduce evaporation from their tissues. Reproduction and dispersal of vascular plants in these dry conditions was achieved through the evolution of specialized seed structures. The diversification of flowering plants (angiosperms) during the Cretaceous period is associated with the sudden burst of speciation in insects.[1] This diversification of insects represented a major selective force in plant evolution, and led to selection of plants that had defensive adaptations. Early insect herbivores were mandibulate and bit or chewed vegetation; but the evolution of vascular plants lead to the co-evolution of other forms of herbivory, such as sap-sucking, leaf mining, gall forming and nectar-feeding.[2] [edit] Records of herbivores Viburnum lesquereuxii leaf with insect damage; Dakota Sandstone (Cretaceous) of Ellsworth County, Kansas. Scale bar is 10 mm. Our understanding of herbivory in geological time comes from three sources: fossilized plants, which may preserve evidence of defense (such as spines), or herbivory-related damage; the observation of plant debris in fossilised animal faeces; and the construction of herbivore mouthparts.[3] Long thought to be a Mesozoic phenomenon, evidence for herbivory is found almost as soon as fossils which could show it. Within under 20 million years of the first fossils of sporangia and stems towards the close of the Silurian, around 420 million years ago, there is evidence that they were being consumed.[4] Animals fed on the spores of early Devonian plants, and the Rhynie chert also provides evidence that organisms fed on plants using a "pierce and suck" technique.[3] Many plants of this time are preserved with spine-like enations, which may have performed a defensive role before being co-opted to develop into leaves. During the ensuing 75 million years, plants evolved a range of more complex organs - from roots to seeds. There was a gap of 50 to 100 million years between each organ evolving, and it being fed upon.[4] Hole feeding and skeletonization are recorded in the early Permian, with surface fluid feeding evolving by the end of that period.[3] A Plain Tiger Danaus chrysippus caterpillar making a moat to block defensive chemicals of Calotropis before feeding [edit] Co-evolution Herbivores depend on plants for food, and have evolved mechanisms to obtain this food despite the evolution of a diverse arsenal of plant defenses. Herbivore adaptations to plant defense have been likened to offensive traits and consist of adaptations that allow increased feeding and use of a host plant.[5] Relationships between herbivores and their host plants often results in reciprocal evolutionary change, called co-evolution. When a herbivore eats a plant it selects for plants that can mount a defensive response. In cases where this relationship demonstrates specificity (the evolution of each trait is due to the other), and reciprocity (both traits must evolve), the species are thought to have co-evolved.[6] The "escape and radiation" mechanism for co-evolution presents the idea that adaptations in herbivores and their host plants have been the driving force behind speciation,[1][7] and have played a role in the radiation of insect species during the age of angiosperms.[8] Some herbivores have evolved ways to hijack plant defenses to their own benefit, by sequestering these chemicals and using them to protect themselves from predators.[1] 400 mio mio mio mio Scala estremamente approx. / doc da Wikipedia:

14 Pteridofite cont. Ambienti terrrestri: luce abbondante (ovunque), la CO2 diffonde velocem. Fattore limitante: acqua Luce (+CO2) e acqua (+sali min) sono separati Aria: sostegno nell’aria (nessun appoggio) pericolo di essicamento (sup esposte al calore del sole) Acqua: trovare, trasportare, risparmiare Completa riorganizzazione della struttura (separazione compiti tra parti diverse) Differenziazione dei tessuti Organi caratteristici (radici – fusto – foglie)

15 Problemi da risolvere Per svolgere una funzione det. devono avere una struttura diversa I tessuti si differenziano grazie a modificazioni non solo nella forma! (come allungarsi, appiattirsi, ecc.) ma anche dello spessore e composizione chimica delle pareti

16 Alcune problematiche Co-evoluzione Erbivori – piante
Adattamenti del produttore e del consumatore (difesa – offesa) Insetto – si nutre di una pianta – seleziona per individui che gli sanno resistere Adattamenti specifici e reciproci (→ ogni specie potrebbe presentare caratteristiche proprie a secondo dell’habitat e delle specie che la predano) → La perdita della BIODIVERSITÀ potrebbe implicare una perdita a livello fitoterapico?

Scaricare ppt "Introduzione alla sistematica vegetale Alcune riflessioni evolutive"

Presentazioni simili

Annunci Google