La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Il progetto SPES: un acceleratore di fasci radioattivi a Legnaro per informazioni ulteriori.

Presentazioni simili

Presentazione sul tema: "Il progetto SPES: un acceleratore di fasci radioattivi a Legnaro per informazioni ulteriori."— Transcript della presentazione:

1 Il progetto SPES: un acceleratore di fasci radioattivi a Legnaro per informazioni ulteriori

2 What are the limits for existence of nuclei? How do weak binding and extreme proton-neutron asymmetry affect nuclear properties? How to built complex nuclei from their basic constituents? What is the origin of the elements?.... Research with exotic nuclei (extreme N/Z ratio) Nuclear-Structure Physics Nuclear Astrophysics Fundamental Interactions Applications

3 Radioactive Beams Physics Neutron-rich beams

4 Element formation beyond iron involve rapid neutron capture and radioactive decay Element formation beyond iron involve rapid neutron capture and radioactive decay Origin of the elements heavier than iron Despite many years of intensive effort, the r-process site and the astrophysical conditions continues to be an open question.

5 Element formation in r-process: quenching of shell-structure? Pfeiffer et al., Z. Phys. A357 (1997) 235 Experimenlal Signatures: Energies of the excited levels Nucleon Separation energies Transition matrix elements Shell evolution

6 New Density Distributions Neutron Star Lead Nucleus crust skin 10 km 10 fm Both neutron skin and neutron star crust are made out of neutron rich matter at similar densities. Neutron-rich matter and neutron skins

7 A Mid-term ISOL Facility for the production of n-rich beams by the fission of Uranium target Neutron Rich Isotopes A: 80-160 RIB INTENSITY: 10 7 -10 9 rare ions/s on the experimental target 238 U (UCx) Fission fragments Experiments 10 13 f/s SPES -RIB facility

8 Primary beamPower on target target Fission s-1 Reacceler atorAMeVA=130,20+ 132 Sn rate ISOLDE p 1-1.4 GeV - 2  A 0.4 KW Direct4·10 12 Linac 3 10 7 HRIBF p 40 MeV 10  A 0.4 KW Direct4·10 11 Tandem 25MV 4 2·10 5 SPIRAL C-Kr 95 AMeV6 KW Direct Cyclotron TRIUMF p 450 MeV 70  A 17 KW Direct SC Linac CRC UCL p 30 MeV 300  A 9 KW Direct Cyclotron EXCYT 13C 45 AMeV0.5 KW Direct Tandem 15MV A review of the ISOL facilities in the world HIE ISOLDE upgrade Direct4·10 12 SC Linac 5-10 2·10 8 HRIBF up-grade p 54 MeV 20  A 1.8KW Direct10 12 Tandem 25MV 4 5·10 5 SPIRAL2 d 40 MeV 5mA200 KW Convert.10 14 Cyclotron 6 2·10 9 SPES p 40 MeV 200  A 8 KW Direct10 13 SC Linac 10 3·10 8

9 Cyclotron: protons 70 MeV 0.75mA High Resolution Mass Selector 1/20000 SC RFQ PIAVE TRASCO RFQ: protons 5MeV 25mA Neutron Facility: BNCT – LENOS Thermal neutrons 10 9 n cm -2 s -1 Fast neutrons 10 14 n s -1 Direct Target 10 13 f s -1 Mass Separator (on HV platform 250KV) Charge Breeder (200KW) installed over HV platform (250KV) Cryopanel SC Linac ALPI General SPES layout

10 The SPES main components 1 - Driver 2 - Target-Ion Source 3 - Beam Transport-Selection Cyclotron 70 MeV protons 750  A Direct target, UCx disks, 10 13 fissions/sec Surface Ion Source,FEBIAD and RILIS Ion sources High-resolution mass spectrometer 1/20000 ECR charge breeder 132 Sn 26+ the present, PIAVE-ALPI accelerator with improved performances 4 - Charge Breeder 5 - Reaccelerator 1 2 3 3 4 5

11 IBA C70 characteristics: Diameter < 4m Weight > 120t Magnetic Gap: 30mm Magnetic field: 1.55T Extraction Radius: 1.2m 2 exit ports SPES design Particles: H - / D - / He 2+ / HH + Variable Energy : 15 MeV  70 MeV extraction Systems:  Stripper  H - / D -  Deflector  He 2+ / HH + Performances:  750µA H -  70MeV :  35µA He 2+  70MeV The driver cyclotron IBA C70 cyclotron

12 SPES target UCx discs Graphite container Tantalum Heather - MULTIPLE UCX SLICES : increase the surface radiation area (P= ε·σ·S· T 4 Stefan-Boltzmann law ) - GRAPHITE DUMP : stops protons with low fission rate & high stopping power value Basic ideas: Fission efficiency  100p per 1.5 Fission Fragments Power density in UCx = 70W/gr Proton Beam 200  A 40 MeV 8kW Exotic beam: 1+ Dump: graphite Target: UCx (30gr) UCx disks 4cm dia Total wheight 30gr 10 13 fissions/sec

13 SPES Target Activities Sub-TASK2: Material Development - Carbide productions - Carbide characterizations - New porous material - New characterization methods Sub-TASK1: Mechanical Development - Thermo-Mechanical Calculation - Handling Calculation - - CAD mechanical drawings - Development of target prototypes - Front- end & new devices Sub-TASK3: Ion Source Development - Laser tests at Pavia lab LaC pellets: Final SPES dimension

14 The SPES Ion Sources The SPES Ion Sources Ionization schema with a Surface ionizer coupled to a Laser beam Hot surface Atom Ion Surface ionization Ionization energy < 5-6 eV Ground state continuum Conductive band Fermi energy Hot surface Work function Ion Laser ionization Atom laser Ionization energy < 9 - 10 eV Ground state continuum Excited states Laser beam

15 Laser source development: INFN-Pavia

16 Protons 70MeV 300  A on UCx target Ambient dose equivalent [  Sv/h] in the target hall and shielding walls around. LNL Radiation Prot. Serv. L. Sarchiapone, D. Zafiropoulos vertical horizontal UCx tantalum FLUKA simulations Radiation protection

17 20 m HRMS CBMS Charge Breeder (HVplatform 250kV) TIS – RF Cooler - WienFilter (60kV extraction + 200kV platform) 8 m 15 m cryopanel 1/20000 1/2500 43 m Radioactive Ion Beam transport lines

18 High Resolution Mass Separator Second stage of the EXCYT isobaric mass separator Project nameEXCYTSPES Number of dipoles22 Bending Angle90°110° Bending radius2.6 m Entrance/exit angle12.8°32° Magnetic field range0.6 - 4.4 kGauss1.0 - 4.4 kGauss beam size at analysis slits0.4 mm Teta acceptance40 mrad (x,x’) emittance 4  mm.mrad Y beam size2 mm Phi acceptance10 mrad (y,y’) emittance 4  mm.mrad5  mm.mrad Resolving power>15.000>20.000 Dispersion16 m28 m Comparison of the main parameters of the EXCYT and the SPES mass spectrometer. SPES HRMS design


20 Nb/ Cu spattered cavities or bulk Nb cavities ALPI superconductive Linac up-grade: Low Beta cavities Stronger Magnetic lenses PIAVE upgrade for SPES - new bunching section - new diagnostics - new cryostats

21 Some expected Beams at SPES ionization efficiencies: (1+) 30% and (n+) 4% (1+) 90% and (n+) 12% for Kr and Xe, Transport efficiency 50%

22 The SPES neutron Facility 6/6 modules machined RFQ1 and RFQ2 brazed and accepted RFQ3 first brazing performed All modules brazed within 2008 Installed and in operation at LNL TRIPS source: 30-50mA protons TRASCO RFQ: 5 MeV High Intensity proton accelerator > 30mA (150kW beam power) Neutron production based on High Intensity proton beam

23 171 cm 156.5 cm 187 cm LiF (2.5 cm) LiF (1 cm) BeO Pb BeD 2 Bi D2OD2O  th (E  0.4 eV) (cm -2 s -1 )  th   total K nth (Gy·h -1 ) K n epi-fast (Gy·h -1 ) K  (Gy·h -1 ) K   K n tot K n (E>10 eV) /  th (Gy·cm 2 ) K  /  th (Gy·cm 2 ) Ref.> 1E+09> 0.90≤ 2E-13 Fase-III1.17E+090.990.700.00080.580.87.93E-161.38E-13 Excellent thermal neutron beam Low gamma field Conversion target (Beryllium) Exit port 10 9 n cm- 2 s- 1 Be target after test at 150 KW Proton beam: 5MeV 30mA 0.84 MeV 1.47 MeV γ 11 B  0.48 MeV (94% events) 10 B n 11 B 7 Li * 4 He Neutron production reaction: 30mA, 5MeV p + Be SPES-BNCT project

24 ¤ Activation Facility (cw beam: I = 30mA) - n energy range = 1-300 keV - astrophysics interest (s TOT -> MACS) - neutron flux ~ 10 10 n/s·cm 2 - small radioactive samples: 10 15 atoms/cm 2 -> implantation of SPES RIBs (2 weeks) Neutron production: 7 Li(p,n) Degradatore di Energia Bersaglio di litio Selettore di fascio Filtro di Wien Possibile produzione bersaglio con fascio SPES ~5% fascio primario ~ 2mA Spettro neutroni stellari 10 10 n/s·cm 2 Fascio protoni 30-50 mA Bersaglio in studio Pierfrancesco Mastinu An irradiation facility to fulfill the increasing demand of high-flux neutron beams, meeting the needs of a large National and International community for studies related to several Interdisciplinary fields, from Astrophysics to bio-medicine, from development of new detectors and electronics to material research. The LENOS facility

25 LNL Director: G.Puglierin LNS Director: M.Lattuada Advisory Committee SPES Working Group Steering Committee Project Leader: G.Prete Technical Coordinator: A.Pisent Scientific Coordinator: A.Covello Qualified Expert: D.Zafiropoulos Task Leaders Project manager Management board SPES project organization La Rana, Pirrone, Colonna, Million, Bruno, Lunardi, Corradi, Casini, Cuttone, Alba Safety & Control, Infrastructure, TIS, RIB manipulation, pDriver, Re-acc, Neutron Facility, Scientific Support

26 SPES Economic plan kEuro Infrastructures RIB12340 Target (2 stations)5900 Beam Transfer7650 Cyclotron8400 Re-accelerator upgrade7000 41290 Infrastructures NeutronFacility3744 High Intensity Linac3632 Neutron Facility BNCT - LENOS3330 10706 total51996 To be developed with external fundings SPES first priority

27 2 Meuro16 Meuro14 Meuro11 Meuro 2006 2008 2009 2010 2011 2012 2013 RIB’s Buildings Cyclotron with safety and infrastructures Proton beam transport Target Ion Source (TIS) for RIB Low Beta ALPI upgrade TIS safety and infrastructures for UCx ChargeBreeder RIB reacceleration Second TIS HRMS 1/20000 Pulsed Beam on reaccelerator SPES funding phase 1 phase 2 phase 3

28 SPES SCHEDULE 2008200920102011201220132014 Facility design First Target and ion source Second target and ion source Authorization to operate Building construction Target installation and commissioning Completion of RFQ for Neutron Facility Installation and commissioning Neutron Facility Cyclotron construction Cyclotron Installation and commissioning Alpi preparation for post acceleration Installation of RIBs transfer lines and spectrometer Complete commissioning Second priority Critical timing

29 INFN Laboratori Nazionali di Legnaro: A.Andrighetto, M.Barbui, G.Bassato, A.Battistella, G.Bisoffi, E.Brezzi, M. Calviani, S.Canella, D.Carlucci, S.Carturan, M.Cavenago, F.Cervellera, R.Cherubini, M.Cinausero, M.Comunian, P.Colautti, L.Corradi, L.Costa, A.Dainelli, Angelis, A.D’Este, J.Esposito, P.Favaron, E.Fagotti, E.Fioretto, M.Giacchini, F.Gramegna, F. Grespan, P.Ingenito, A.Lombardi, M.Lollo, G.Maggioni, G.Martin Hernandez, P.Mastinu, P.Modanese, M.F.Moisio, D.Napoli, A.Palmieri, R.Pegoraro A.Pisent, M.Poggi, A.Porcellato, P.A.Posocco, J.Praena, G.Prete, G.Puglierin, M.Rigato, V.Rizzi, C.Roncolato, Y.Shengquan, S.Stark, A.M.Stefanini, M.Tonezzer, D.Zafiropoulos INFN Laboratori Nazionali del Sud, Catania: L.Calabretta, L.Celona, F.Chines, L.Cosentino, G.Cuttone, P.Finocchiaro, S.Gammino, M.Lattuada, G.E.Messina, M.Re, D.Rizzo, A. DiPietro INFN and Dipartimento di Fisica, University of Padova: S.Beghini, L. De Nardo, P.Mason, M.Mazzocco G.Montagnoli, F.Scarlassara, G.F. Segato, C.Signorini, S.Lenzi INFN and Dipartimento di Fisica, University of Torino: G.Pollarolo INFN Sezione di Bari: V.Variale, N. Colonna INFN and Dipartimento di Fisica, University of Pavia: P.Benetti INFN and Dipartimento di Fisica, University of Napoli: G. La Rana, A. Covello, A. Gargano, D. Pierroutsakou INFN and Dipartimento di Fisica, University of Firenze: G. Casini INFN and Dipartimento di Fisica, University of Bologna: M. Bruno, M. D’Agostino INFN and Dipartimento di Fisica, University of Milano: B. Million, G. Colò INFN and Dipartimento di Fisica, University of Catania: S. Pirrone, SPES Working group: INFN

30 University of Padova Dipartimento di Ingegneria Meccanica: L. Biasetto, P. Colombo, M. Manzolaro, G. Meneghetti, Dipartimento di Ingegneria delle Costruzioni e Trasporti: V. Salomoni, C. Majorana Dipartimento di Scienze chimiche: P. Di Bernardo, P. Zanonato, L. Piga ENEA, Bologna: C. Antonucci, S. Cevolani, C. Petrovich, R. Tinti LASA,Milano: C. De Martinis Dipartimento di Ingegneria Meccanica, University of Trento: I. Cristofolini, M. De Cecco, R. Oboe Dipartimento di Ingegneria Nucleare, University of Palermo: G. Vella, E. Tomarchio, S. Rizzo, P. Guarino SPES working Group: Italian Insitutions

31 Sezione di Padova EXOTIC GAMMA PRISMA Esperimenti legati alla Fisica di SPES

32 Il gruppo EXOTIC ha collaborato al gruppo di studio sullo spettrometro ad alta risoluzione. P-40 MeV 0.2 mA 238 U target +20 kV Low mass resolution selection High mass resolution selection On -60 kV plat X +1 Charge breeder On +20kV X +n Bunching RFQ PIAVE SRFQ ALPI RFQ-DTL P-40 MeV 0.2 mA 238 U target +250 kV Low mass resolution selection High mass resolution selection X +1 Charge breeder On +250kV X +n PIAVE SRFQ ALPI RFQ-DTL Separation between high and low radiation zones Separation between high and low radiation zones layout della linea di trasporto e di selezione EXOTIC

33 AGATA GAMMA Next generation spectrometer based on gamma-ray tracking 4  germanium array No suppression shields Very high efficiency and spectrum quality For radioactive beams facilities such as SPES, SPIRAL2, FAIR

34 The Heavy-Ion Magnetic Spectrometer PRISMA is a magnetic spectrometer for heavy ions installed at Legnaro, with very large solid angle (80 msr), wide momentum acceptance (10 %) and good mass resolution (1/300) F.Scarlassara, S.Beghini, P.Mason, G.Montagnoli Univ. di Padova and INFN - Sezione di Padova + LNL, Univ. e Sezioni INFN di Napoli e Torino Il gruppo PRISMA padovano ha in programma nel prossimo futuro di indagare le possibilita` che lo spettrometro potrebbe offrire usando i fasci radioattivi che saranno prodotti da SPES. Le caratteristiche di PRISMA ne fanno uno strumento ideale per l'uso con fasci esotici. In ambito SPES e' in fase di perfezionamento un accordo di collaborazione con ISOLDE (CERN), ove si intende costruire uno spettrometro simile. Il gruppo PRISMA di Padova si sta occupando dell'utilizzo dello spettrometro in “gas-filled mode”, che consente di misurare a zero gradi in particolare reazioni di fusione; questo sviluppo riguarda soprattutto il “dopo-Agata” e l’utilizzo di fasci prodotti da SPES. PRISMA

35 Sezione di Padova Il progetto SPES, per poter essere realizzato, ha bisogno del contributo delle Sezioni INFN, ad esempio in termini di lavori di officina. La sezione di Padova può quindi contribuire a costruire parti del progetto (esempio: separatore di massa ad alta risoluzione previsto nella terza fase) con la sua officina meccanica.

36 The INFN Legnaro Laboratory

Scaricare ppt "Il progetto SPES: un acceleratore di fasci radioattivi a Legnaro per informazioni ulteriori."

Presentazioni simili

Annunci Google