La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Metodi Quantitativi per Economia, Finanza e Management Lezione n°6.

Presentazioni simili


Presentazione sul tema: "Metodi Quantitativi per Economia, Finanza e Management Lezione n°6."— Transcript della presentazione:

1 Metodi Quantitativi per Economia, Finanza e Management Lezione n°6

2 Statistica descrittiva bivariata Indaga la relazione tra due variabili misurate. Si distingue rispetto alla tipologia delle variabili indagate: var. qualitative/quantitative discrete: tavole di contingenza (o a doppia entrata) var. quantitative: analisi di correlazione lineare una var. qualitativa e una quantitativa: confronto tra le medie

3 Confronto tra le medie Se si vuole incrociare una variabile quantitativa con una variabile qualitativa, la loro relazione può essere descritta confrontando le medie della variabile numerica all’interno delle categorie definite dalla variabile misurata a livello nominale/ordinale. Rapidità Tipo cliente MediaN Persone fisiche Aziende Totale

4 Un indice sintetico dell’intensità della relazione si basa sulla scomposizione della varianza per la variabile quantitativa Y, di cui viene studiata la dipendenza nei confronti della variabile categorica X. La variabilità totale di Y è SQT y =SQ tra + SQ nei dove SQT y (somma dei quadrati tot) è la variabilità tot, SQ tra (somma dei quadr. tra i gruppi) esprime quanta variabilità di Y può essere legata al variare delle categorie di X, SQ nei (somma dei quadr.nei gruppi) esprime la variabilità nell’andamento di Y indipendente da X. Confronto tra le medie

5

6 Ricerca di mercato “I biscotti”

7 Il CD allegato contiene tutte le elaborazioni effettuate per la realizzazione della ricerca Agenda Obiettivi della ricerca Descrizione del database Questionario di rilevazione Statistica descrittiva univariata Segmentazione a posteriori per omogeneità  Modalità classica Analisi Fattoriale Cluster Analysis  Modalità flessibile  Conjoint Analysis  Cluster Analysis Analisi Discriminante Lineare Conclusioni

8 Obiettivi della ricerca Indagine del comportamento dei consumatori in merito all’acquisto e al consumo di biscotti tramite l’applicazione di opportune tecniche di analisi statistica Individuazione di possibili azioni manageriali da parte delle aziende produttrici di biscotti

9 Descrizione del database Il database “DB Biscotti” contiene dati relativi ad una indagine di mercato realizzata nell’anno 2005 (nel corso del mese di Aprile) relativamente all’acquisto e al consumo di biscotti Si tratta di interviste personali realizzate a persone con età maggiore di 18 anni Il numero di interviste realizzate sono in totale 221 Il database contiene 2 tipologie di variabili:  Qualitative  Quantitative Le prime (sesso, età, dove acquista abitualmente i biscotti, etc..) sono state ricodificate e trasformate da stringhe a numeriche

10 Questionario di rilevazione 1.Informazioni sulle abitudini di consumo/acquisto In questa fase vengono rilevate le abitudini di acquisto dell’intervistato in relazione a: -occasione in cui consuma biscotti -luogo in cui consuma biscotti -chi acquista biscotti in famiglia -dove acquista biscotti -con quale frequenza acquista biscotti 2.Valutazione degli attributi rilevanti nell’atto di acquisto dei biscotti Si tratta di 20 attributi caratterizzanti la categoria di riferimento su cui ogni intervistato ha espresso un giudizio di importanza nel momento della scelta del prodotto, su una scala da 1 a 9 (1= gradimento minimo, 9= gradimento massimo) 3.Esplicitazione dell’insieme evocato E’ stato chiesto ad ogni intervistato di citare liberamente 3 marche di biscotti 4.Valutazione della soddisfazione dell’ultima marca di biscotti acquistata Sui medesimi 20 attributi ed in riferimento all’ultima marca acquistata il campione ha espresso una valutazione del grado di soddisfazione su una scala da 1 a 9 (1= gradimento minimo, 9= gradimento massimo)

11 Questionario di rilevazione 5.Informazioni extra sul comportamento del consumatore Marca preferita Grado di coinvolgimento nell’acquisto Attenzione al messaggio pubblicitario 6.Informazioni socio-demografiche In questa fase vengono rilevate le informazioni socio-demografiche dell’intervistato Sesso Età Status familiare Professione Titolo di studio

12 Abitudini di consumo/acquisto Quando consuma abitualmente biscotti E’ stata data la possibilità di fornire al massimo 2 risposte, ma solo il 55% del campione ne ha usufruito Si è compreso che i biscotti vengono consumati prevalentemente per la prima colazione (85,5% - risp. 1) e nell’arco della giornata, sia come snack a merenda (25,3% – risp. 2), sia come dessert dopo cena (12,2% - risp. 2)

13 Abitudini di consumo/acquisto Dove consuma abitualmente biscotti Anche per questa domanda erano consentite al massimo 2 risposte, ma solo il 38.9% degli intervistati le ha fornite entrambe Per il 96.4% (risp. 1) del campione il luogo preferito dove consumare biscotti è la casa Si evidenzia una sostanziale omogeneità in merito alle altre opzioni di risposta

14 Abitudini di consumo/acquisto Chi acquista biscotti in famiglia Con quale frequenza acquista biscotti Si osserva che nella maggioranza dei casi (64.3%) i biscotti vengono acquistati direttamente dal consumatore o da un parente stretto  genitore (21.7%)  coniuge (13.6%) Si evidenziano 2 tendenze  Acquisto frequente (62,9% - percentuale cumulata di “Più di una volta a settimana” e “Una volta a settimana”)  Acquisto sporadico (37,1% - percentuale cumulata di “Meno di una volta a settimana” e “Una volta al mese”)

15 Abitudini di consumo/acquisto Dove acquista abitualmente i biscotti Solo il 34,4% degli intervistati ha dato una seconda risposta Come prevedibile, nella grande maggioranza dei casi l’acquisto di biscotti avviene nel supermercato; solo in un secondo momento si sposta dal fornaio e in pasticceria Si sottolinea come le opzioni “bar” e “distributori automatici” siano state selezionate nella sola risp. 2 rispettivamente dal 5% e dal 2,7% del campione

16 Insieme evocato Appare evidente la netta predominanza di marche industriali, soprattutto Mulino Bianco Tale risultato è probabilmente diretta conseguenza della strategia aziendale fortemente focalizzata su pubblicità e comunicazione Mulino Bianco, Pavesi e Saiwa che solitamente preferiscono il canale televisivo hanno ottenuto valori marcatamente più alti rispetto a Galbusera, che invece privilegia il mezzo stampa Prima marca ricordata Seconda marca ricordata Terza marca ricordata Galbusera10,4%9,5%6,3% Mulino Bianco 58,4%16,7%10% Pavesi6,8%18,6%16,7% Saiwa9%14,9%16,7%

17 Informazioni extra Marca preferita Oltre la metà del campione ha una marca preferita (57.9%) Si evidenzia un sostanziale apprezzamento della marca preferita tanto che gli intervistati dichiarano di essere intenzionati a continuare ad acquistare tale marca Più discordanti sono le risposte in merito alla disponibilità a pagare un prezzo più alto. Si registra in questo caso un alto valore di Std. Deviation

18 Informazioni extra Grado di coinvolgimento I consumatori sono mediamente attenti alla scelta del prodotto (mean 6,74) e non scelgono la prima marca che capita (mean 2.68) Secondo il campione, le marche non propongono prodotti simili (mean 4.35) Dati i risultati in merito a “Scelgo tra le marche che trovo nel punto vendita” si deduce che esistono comportamenti di consumo contrastanti (Std. Deviation 2,319)  Alcuni si adeguano alle marche presenti nel punto vendita  Altri non acquistano se non trovano la loro marca preferita In media al consumatore piace provare marche diverse nonostante comportamenti di fedeltà alla marca (ampia Std. Deviation)

19 Informazioni extra Attenzione al messaggio pubblicitario La pubblicità non risulta essere un fattore determinante nella scelta del biscotto Si pone una maggiore attenzione al messaggio pubblicitario quale fonte di informazioni utili relativamente al prodotto Tale risultato è in netta contraddizione con quanto precedentemente esplicitato in merito all’insieme evocato. Si ritiene che l’intervistato non abbia espressamente voluto ammettere di farsi influenzare dalla pubblicità. Si suggerisce a questo punto una ricerca esplorativa di tipo qualitativo

20 Variabili socio-demografiche Sesso, Età, Status familiare Il campione intervistato è costituito in prevalenza da donne (61%) Si evidenzia la presenza di 2 principali gruppi di intervistati  I single (più della metà del campione)  Le coppie (in prevalenza quelle senza figli) La percentuale di nuclei famigliari allargati è invece residuale Per quanto riguarda l’età, gli individui sono distribuiti in modo sostanzialmente equilibrato fra le fasce proposte

21 Variabili socio-demografiche Professione La percentuale di studenti è molto alta (32.1% ) ed è coerente con il dato relativo all’età secondo cui i giovani tra i 18 e i 25 rappresentano il 35% del campione La categoria impiegato/a raggiunge una percentuale pari al 27.2%; ciò dipende dal fatto che il termine racchiude varie tipologie di lavoratori (dall’impiegato di banca al ragioniere, al dipendente della pubblica amministrazione) Le altre professioni sono presenti in modo omogeneo

22 Variabili socio-demografiche Titolo di studio Il livello culturale è medio-alto. Infatti oltre il 50% delle persone intervistate ha conseguito un diploma di scuola media superiore, circa il 30% è laureato, mentre solo il 4% ha ottenuto un master post-laurea Questo risultato è giustificato dal fatto che il 60% degli intervistati è composto da persone tra 18 e 35 anni. Tali individui si sono rivelati facilmente avvicinabili e disponibili alla compilazione del questionario

23 Il questionario Questionario_Semplificato.xls

24 Test per lo studio dell’associazione tra variabili Nella teoria dei test, il ricercatore fornisce ipotesi riguardo la distribuzione della popolazione; tali Ip sono parametriche se riguardano il valore di uno ò più parametri della popolazione conoscendone la distribuzione a meno dei parametri stessi; non parametriche se prescindono dalla conoscenza della distribuzione della popolazione. Obiettivo dei test: come decidere se accettare o rifiutare un’ipotesi statistica alla luce di un risultato campionario. Esistono due ipotesi: H 0 e H 1, di cui la prima è l’ipotesi nulla, la seconda l’ipotesi alternativa la quale rappresenta, di fatto, l’ipotesi che il ricercatore sta cercando di dimostrare.

25 Test per lo studio dell’associazione tra variabili Si può incorrere in due tipologie di errore: Stato di Natura Decisione Non Rifiutare H 0 No errore Errore Secondo Tipo Rifiutare H 0 Errore Primo Tipo Possibili Risultati Verifica di Ipotesi H 0 Falsa H 0 Vera No Errore

26 Errore di Primo Tipo  Rifiutare un’ipotesi nulla vera  Considerato un tipo di errore molto serio La probabilità dell’errore di primo tipo è  Chiamato livello si significatività del test Fissato a priori dal ricercatore Test per lo studio dell’associazione tra variabili

27 Errore di Secondo Tipo  Non rifiutare un’ipotesi nulla falsa La probabilità dell’errore di secondo tipo è β Test per lo studio dell’associazione tra variabili

28 Stato di Natura Decisione Non Rifiutare H 0 No errore (1 - )  Errore Secondo Tipo ( β ) Rifiutare H 0 Errore Primo Tipo ( )  Possibili Risultati Verifica di Ipotesi H 0 Falsa H 0 Vera Legenda: Risultato (Probabilità) No Errore ( 1 - β ) Test per lo studio dell’associazione tra variabili

29  Errore di primo tipo ed errore di secondo tipo non si posso verificare contemporanemente  Errore di primo tipo può occorrere solo se H 0 è vera  Errore di secondo tipo può occorrere solo se H 0 è falsa Se la probabilità dell’errore di primo tipo (  ), allora la probabilità dell’errore di secondo tipo ( β ) Test per lo studio dell’associazione tra variabili

30 Lettura di un test statistico (1) Esempio: 1) Ipotesi b1= b2 =....=bk = 0H0:H0: H1:H1: bi = 0 2) Statistica test Statistica F 3) p-value Rappresenta la probabilità di commettere l’errore di prima specie. Può essere interpretato come la probabilità che H 0 sia “vera” in base al valore osservato della statistica test

31 Lettura di un test statistico (2) Se p-value piccolo RIFIUTO H 0 Altrimenti ACCETTO H 0

32 Test χ² per l’indipendenza statistica Si considera la distribuzione χ², con un numero di gradi di libertà pari a (k-1)(h-1), dove k è il numero di righe e h il numero di colonne della tabella di contingenza. Qui: H 0 :indipendenza statistica tra X e Y H 1 : dipendenza statistica tra X e Y La regione di rifiuto cade nella coda di destra della distribuzione Regione di rifiuto La regione di rifiuto è caratterizzata da valori relativamente elevati di χ²; se il livello di significatività è al 5%, si rifiuta per χ²> χ² 0.95

33 Test χ² per l’indipendenza statistica

34 Test t per l’indipendenza lineare Questo test verifica l’ipotesi di indipendenza lineare tra due variabili, partendo dall’indice di correlazione lineare ρ. Si ha: H 0 : indipendenza lineare tra X e Y (ρ popolaz =0) H 1 : dipendenza lineare tra X e Y (ρ popolaz ≠ 0) La statistica test è distribuita come una t di Student con n-2 gradi di libertà, e tende a crescere all’aumentare dell’ampiezza campionaria t= ρ √(n-2)/ (1- ρ²)

35 Regione di rifiuto La regione di rifiuto è caratterizzata da valori relativamente elevati di t in modulo; se il livello di significatività è al 5%, si rifiuta per |t| >t 0,975 Test t per l’indipendenza lineare

36

37 Test F per la verifica di ipotesi sulla differenza tra medie Si prende in considerazione la scomposizione della varianza; qui H 0 : le medie sono tutte uguali tra loro H 1 : esistono almeno due medie diverse tra loro La statistica test da utilizzare, sotto l’ipotesi H 0, si distribuisce come una F di Fisher con (c-1,n-1) gradi di libertà. Tende a crescere all’aumentare della varianza tra medie e al diminuire della variabilità interna alle categorie. Cresce inoltre all’aumentare dell’ampiezza campionaria.

38 La regione di rifiuto cade nella coda di destra della distribuzione, cioè è caratterizzata da valori relativamente elevati di F; se il livello di significatività è 5%, si rifiuta per F> F 0, Regione di rifiuto Test F per la verifica di ipotesi sulla differenza tra medie

39

40

41 Univariate Analysis

42 Bivariate Analysis Objective To describe the relationship between two variables jointly. qualitative variables: Analysis of Connection quantitative variables: Analysis of Correlation mixed variables: Analysis of Variance

43 Bivariate Analysis


Scaricare ppt "Metodi Quantitativi per Economia, Finanza e Management Lezione n°6."

Presentazioni simili


Annunci Google