La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Fisica Adronica D. Bettoni, S. Malvezzi, R. Mussa, F. Tessarotto, A. Zoccoli Gruppo di Lavoro della CSN1 Roma – 15/03/04.

Presentazioni simili


Presentazione sul tema: "Fisica Adronica D. Bettoni, S. Malvezzi, R. Mussa, F. Tessarotto, A. Zoccoli Gruppo di Lavoro della CSN1 Roma – 15/03/04."— Transcript della presentazione:

1 Fisica Adronica D. Bettoni, S. Malvezzi, R. Mussa, F. Tessarotto, A. Zoccoli Gruppo di Lavoro della CSN1 Roma – 15/03/04

2 Roma 15/03/2004Fisica Adronica2 Argomenti da Trattare Spettroscopia del charmonio Spettroscopia quark leggeri –Ricerca di glueball, Ibridi, Multiquarks. Charmonium hybrids Charmonio nella materia Fattori di forma del protone nella regione timelike Deeply Virtual Compton Scattering Drell-Yan, Transverse Quark Distributions Produzione di fotoni ad alto p T Mesoni e barioni charmati –Vite medie, Decadimenti, Violazione di CP, Dinamiche.

3 Roma 15/03/2004Fisica Adronica3 Organizzazione Componenti del Gruppo –D. Bettoni, S.Malvezzi, R.Mussa, F.Tessarotto, A.Zoccoli Riunioni periodiche –Milano 02/03/04 –Telefonica 09/03/04 Scambio informazioni tramite pagina web

4 Roma 15/03/2004Fisica Adronica4 Programma di Lavoro Esplorare nel modo più ampio possibile le potenzialità di fisica del settore. Per ciascuno degli argomenti: –Fare il punto della situazione attuale –Analizzare la situazione tra 5-10 anni (esperimenti in corso o approvati) –Formulare i requisiti (acceleratore e rivelatore) di nuovi esperimenti.

5 Roma 15/03/2004Fisica Adronica5 Spettroscopia del Charmonio

6 D. Bettoni - The Panda experiment 6 Charmonium Spectroscopy The charmonium system has often been called the positronium of QCD. Non relativistic potential models (with relativistic corrections) and PQCD make it possible to calculate masses, widths and branching ratios to be compared with experiment. In pp annihilations states with all quantum numbers can be formed directly: the resonace parameters are determined from the beam parameters, and do not depend on energy and momentum resolution of the detector.

7 D. Bettoni - The Panda experiment 7 The c (1 1 S 0 ) Despite the recent measurements by E835 not much is known about the ground state of charmonium: the error on the mass is still bigger than 1 Mev recent measurements give larger widths than previously expected A large value of the c width is difficult to explain in terms of simple quark models. Also unusually large branching ratios into channels involving multiple kaons and pions have been reported. A precision measurements of the c mass, width and branching ratios is of the utmost importance, and it can only be done in by direct formation in pp.

8 D. Bettoni - The Panda experiment 8 The c (1 1 S 0 ) M( c ) = MeV ( c ) = MeV T. Skwarnicki – Lepton Photon 2003

9 D. Bettoni - The Panda experiment 9 The Belle collaboration has recently presented a 6 signal for B KK S K which they interpret as evidence for c production and decay via the process: with: in disagreement with the Crystal Ball result, but reasonably consistent with potential model expectations. (DPF 2002). The c (2 1 S 0 ) discovery by BELLE

10 D. Bettoni - The Panda experiment 10 c (2 1 S 0 ) BaBar 88 fb -1 Preliminary Log-scale M( c ) = MeV ( c ) = MeV T. Skwarnicki – Lepton Photon 2003

11 D. Bettoni - The Panda experiment 11 The h c ( 1 P 1 ) Precise measurements of the parameters of the h c are of extreme importance in resolving a number of open questions: Spin-dependent component of the q q confinement potential. A comparison of the h c mass with the masses of the triplet P states measures the deviation of the vector part of the q q interaction from pure one-gluon exchange. Total width and partial width to c + will provide an estimate of the partial width to gluons. Branching ratios for hadronic decays to lower c c states.

12 D. Bettoni - The Panda experiment 12 Quantum numbers J PC =1 +-. The mass is predicted to be within a few MeV of the center of gravity of the c ( 3 P 0,1,2 ) states The width is expected to be small (h c ) 1 MeV. The dominant decay mode is expected to be c +, which should account for 50 % of the total width. It can also decay to J/ : J/ + 0 violates isospin J/ suppressed by phase space and angular momentum barrier Expected properties of the h c ( 1 P 1 )

13 D. Bettoni - The Panda experiment 13 A signal in the h c region was seen by E760 in the process: Due to the limited statistics E760 was only able to determine the mass of this structure and to put an upper limit on the width: The h c ( 1 P 1 ) E760 observation

14 D. Bettoni - The Panda experiment 14 It is extremely important to identify this resonance and study its properties. To do so we need: High statistics: the signal will be very tiny Excellent beam resolution: the resonance is very narrow The ability to detect its hadronic decay modes. The search and study of the h c is a central part of the experimental program of the PANDA experiment at GSI. The h c ( 1 P 1 )

15 D. Bettoni - The Panda experiment 15 Charmonium States above the D D threshold The energy region above the D D threshold at 3.73 GeV is very poorly known. Yet this region is rich in new physics. The structures and the higher vector states ( (3S), (4S), (5S)...) observed by the early e+e- experiments have not all been confirmed by the latest, much more accurate measurements by BES. It is extremely important to confirm the existence of these states, which would be rich in D D decays. This is the region where the first radial excitations of the singlet and triplet P states are expected to exist. It is in this region that the narrow D-states occur.

16 D. Bettoni - Charmonium 16 The X(3872) New state discovered by Belle in B K (J/ + - ), J/ µ + µ - or e + e - M = MeV 2.3 MeV (90 % C.L.) X(3872) seen also by CDF M = MeV

17 Charmonia produced/formed at dedicated facilities ( all samples after 2000 ): Asymmetric B-factories: Babar | Belle, with 150 fb -1 each -charm factory : BES, with 58 M J/ and 14 M (2s),pp charmonium factory: E835 Roberto Mussa,Joint CLEO-c/BES||| Workshop, Beijing, Jan.13-15, 2004 La rinascita dell'interesse nel charmonio in questo decennio deve molto alle B-factories, che consentono di produrre questi stati dai decays del B, in, e con radiative return (ISR).

18 Charmonio: Facilities dedicate corto/medio termine CLEO-c : 30 M (3770) [run 2004] 1.5 M (4140) [run 2005] ~1G J/ [run 2006] bonus: G (2S) [calibrazioni ] BES-III ( ?, con CsI Ecal): 10 G J/, 3 G (2S) all'anno 25 M (3770) all'anno BaBar/Belle (da ora al ): 500 fb -1 ciascuna (2011?- ): Luminosity budget da definire

19 Determinazione J PC della X(3872) : charmonio o tetraquark? Studio delle caratteristiche della c (2S), scoperta nel 2002 Hyperfine splitting : M a meglio di 1 MeV Larghezza totale e di annichilazione Transizioni radiative a e h c, e da (2S). Transizioni adroniche (p.es. c (2S) c (1S) ) Hyperfine splitting stati P: conferma h c di E760/E835 con altre tecniche Ricerca di altri stati stretti nella regione delle soglie Studio delle transizioni della (3770) a charmonio Misure di precisione sugli stati e c : Transizioni Radiative: E1 al 1-2%, M1 al 5-10% Larghezze totali stati e c : da 10% a qualche %. Transizioni Adroniche Rare Annichilazioni esclusive barione-antibarione, mesone-mesone ( verifiche di spettroscopia quark leggeri) Larghezze parziali in finalmente a meglio del Fisica del charmonio: questioni aperte in spettroscopia e decadimenti

20 Non e' tutto: l'osservazione (Belle) di una inaspettatamente alta sezione d'urto e + e - doppio ccbar pone questioni fondamentali di QCD. Come negli anni 90 la discrepanza tra le misure di produzione di charmonio prompt al Tevatron ha consentito di compiere un sostanziale salto nella comprensione teorica della QCD come effective field theory (NRQCD), e' auspicabile che lo studio della produzione di doppio ccbar possa stimolare nuovi sviluppi teorici. Al momento, le previsioni di NRQCD sulla produzione di prompt charmonium al Tevatron sembrano in parte contraddette dall'analisi della polarizzazione : i risultati del Run II (CDF/D0) sono fortemente attesi. La soppressione della produzione di stati del charmonio in urti di ioni pesanti e' una delle firme caratteristiche attese per lo studio del Quark Gluon Plasma. Dopo il risultato di NA50, sono fortemente attesi sviluppi da RHIC, NA49 nei prossimi anni. Fisica del charmonio: questioni aperte in produzione

21 A multifold approach: the (Heavy) Quarkonium Working Group Spectroscopy Decays Production Precision SM measurements Quarkonium at finite T New Physics Opportunities QWG1, CERN, November 2002 QWG2, FNAL, September 2003 QWG3, IHEP Beijing, October 2004 Visit our web site at A joint experimental & theoretical working group to define priorities, unify language, develop common analysis tools and maximize the amount of information than can be extracted from the wealth of new data. BES,CLEO-c E835 BaBar,Belle Aleph,L3 CDF,D0 Hera-B NA50,60 Phenix,Star Zeus, H1 CDF,D0 BESIII Panda LHCb,BTeV Atlas,CMS Alice

22 CHARMONIUM RADIATIVE TRANSITIONS are the main road to access non vector states from e+e- machines. are an ideal arena to study relativistic corrections on charmonium wavefunctions Should be ideal tools to measure both c and c We have: The good old ones (8+4 parameters to measure).... Roberto Mussa,Joint CLEO-c/BES||| Workshop, Beijing, Jan.13-15, 2004

23 CHARMONIUM RADIATIVE TRANSITIONS are the main road to access non vector states from e+e- machines. are an ideal arena to study relativistic corrections on charmonium wavefunctions Should be ideal tools to measure both c and c We have: The good old ones (8+4 parameters to measure) and tough new ones (7+3 other parameters) Roberto Mussa,Joint CLEO-c/BES||| Workshop, Beijing, Jan.13-15, 2004

24 Roma 15/03/2004Fisica Adronica24 Spettroscopia dei Quark Leggeri

25 Roma 15/03/2004Fisica Adronica25 Exotics & Glueballs QCD suggests the existence of non states like: Glueballs ( gg,ggg ): mesons made of bound gluons. Hybrids ( ): qqbar pairs with an excited gluon. Multiquark states (,, ) and/or meson molecules. Many new states foreseen New multiplets ! Possible mixing with the standard mesons (especially for glueballs). Mass range (from lattice QCD predictions): > 1.5 GeV

26 Roma 15/03/2004Fisica Adronica26 Exotic Signatures Possible signatures for the exotics states: Exotics quantum numbers J PC = 0 +-, 1 -+, 2 +-, etc B=1 and S=1 (no standard baryons or mesons) No place in the standard meson nonets Decay width not compatible with QCD predictions for standard states Enhanced production in gluon rich environments (for glueballs): Central production p p annihilation J/ψ radiative decays suppressed production (for glueballs)

27 Roma 15/03/2004Fisica Adronica27 Experimental strategy For example for Glueball search one exploits the preferred production reactions like: Central production (DPE) Results: WA102, Gams Future: GTeV (?), HERAg (No) p p annihilation Results: Obelix, Crystal Barrel,BNL Future: PANDA J/ψ radiative decays Results: DM2, Mark Future: BES (?) suppressed production Results: LEP experiments 1 2

28 Roma 15/03/2004Fisica Adronica28 For the quantum numbers and the decay width determination coupled channel and spin-parity analyses are mandatory ! pp pp K + K - 0 pp K ± K 0 ± LHNPLP Ev Ev Ev. Obelix

29 Roma 15/03/2004Fisica Adronica29 Glueballs Lightest states predicted by Lattice QCD: J PC = 0 ++,2 ++,0 -+ -Mass (G.B. West 1997) : m(0 ++ ) < m(2 ++ ) < m(0 -+ ) -Mixing with the scalar nonet! Best candidate for the 0 ++ glueball: f 0 (1500). * Morningstar & Peardon 1999 E692 pp pp(KsKs) WA102 pp pp(K + K - ) M 2 ( + - ) OBELIX (pp) 1 S 0

30 Roma 15/03/2004Fisica Adronica30 Hybrids Light states predicted with Mass ~ 2GeV. Best candidates: OBELIX p p ± ± Exotic number: J PC = 1 -+ M = 1370 MeV Seen also by Crystal Barrel in the pn reaction. η(1490): J PC = 0 -+ Problem: the masses of the candidates are too low ! E852 p p

31 Roma 15/03/2004Fisica Adronica31 Multiquark states Θ + (1530) nK + or pK 0 Ξ -- Ξ - π - or - K - Ξ + Ξ 0 π + or + K 0 ddssuuussd uudds The anti-decuplet proposed by Diakonov, Petrov & Polyakov (Z.Phys.A359 (1997) 305) with the three exotic baryons at the corners - requiring the indicated five valence quarks - and their decay modes. Masses: 1530 MeV and 2070 MeV invariant mass [GeV/c2] events CLAS SPring-8 Many evidence, but small significance. Not yet clear !

32 Roma 15/03/2004Fisica Adronica32 multipletti qq candidati chirali candidatistati gluonici candidati ibridi candidati 4 quark n=1 n=2 Molti candidati e molto lavoro da fare per chiarire la situazione !

33 Roma 15/03/2004Fisica Adronica33 Charmonium Hybrids

34 Roma 15/03/2004Fisica Adronica34 Charmonium Hybrids Fluxtube-Modell predicts DD** decays –ifm H <4,29 GeV – H <50 MeV Some exotics can decay neither to D D nor to D D* –e.g.: J PC (H)=0 +- fluxtube allowed J/ f 2, J/ ( ) S,h 1c fluxtube forbidden c0, c0, c2, c2, c h 1 –Small number of final states with small phasespace CLEO

35 Roma 15/03/2004Fisica Adronica35 Charmonium Hybrids Gluon rich process creates gluonic excitation in a direct way –ccbar requires the quarks to annihilate (no rearrangement) –yield comparable to charmonium production 2 complementary techniques –Production (Fixed-Momentum) –Formation (Broad- and Fine-Scans ) Momentum range for a survey –p ~15 GeV

36 Roma 15/03/2004Fisica Adronica36 Fattori di Forma del Protone nella Regione Timelike

37 Roma 15/03/2004Fisica Adronica37 Proton Timelike Form Factors The electromagnetic form factors of the proton in the time-like region can be extracted from the cross section for the process: pp e + e - First order QED predicts: Data at high Q 2 are crucial to test the QCD predictions for the asymptotic behavior of the form factors and the spacelike-timelike equality at corresponding values of Q 2.

38 Roma 15/03/2004Fisica Adronica38 Predictions of nucleon form factors are applicable up to high Q 2 in both the spacelike and timelike regions. Perturbative QCD and analyticity relate timelike and spacelike form factors, predicting a continuous transition and spacelike-timelike equality at high Q 2. At high Q 2 PQCD predicts: F 1 and F 2 are the Dirac and Pauli form factors respectively. PQCD and analyticity predict: There are several unexpected features in the existing data which deserve further experimental investigation: Threshold Q 2 dependence. High Q 2 predictions. Resonant structures.

39 Roma 15/03/2004Fisica Adronica39 Threshold Q 2 Dependence Steep behaviour near threshold observed by PS 170 at LEAR

40 Roma 15/03/2004Fisica Adronica40 High-Q 2 predictions The dashed line is the PQCD fit. The dot-dashed line represents the dipole behaviour of the form factor in the spacelike region for the same values of |Q| 2. The expected Q 2 behaviour is reached quite early, however there is a factor of two between timelike and spacelike data measured at the same |Q| 2.

41 Roma 15/03/2004Fisica Adronica41 Resonant Structures The dip in the total multihadronic cross section and the steep variation of the proton form factor near threshold may be fitted with a narrow vector meson resonance, with a mass M 1.87 GeV and a width MeV, consistent with an N N bound state. These considerations strongly support the importance of a new measurement of the neutron proton timelike form factors with much higher statistics than previous work and with the capability of separately determining the electric and magnetic form factors.

42 Roma 15/03/2004Fisica Adronica42 Measurement of the Form Factor E835 statistics not sufficient to measure the angular distribution (and thus determine G E and G M separately. Calculate G M under two hypotheses: (a) G E = G M (b) G E contribution negligible

43 Roma 15/03/2004Fisica Adronica43 The dashed line is the PQCD fit: E835 Form Factor Measurement s (GeV 2 ) 10 2 |G M | (a) 10 2 |G M | (b)

44 Roma 15/03/2004Fisica Adronica44 Future Measurements of the Proton Timelike Form Factors Measurements at e + e - machines (to be checked): –BaBar –Belle –CLEO-III/CLEO-C –BES –Daphne –VEPP Measurements at p p machines: –PANDA

45 Roma 15/03/2004Fisica Adronica45 Mesoni e Barioni Charmati

46 Roma 15/03/ Charm...the issues Lifetime Rare decays Mixing Semileptonic sector Hadronic decays (Dalitz plot) Leptonic decays Multi-body channels (4,5,6 bodies!) Charm Baryons D* spectroscopy

47 Roma 15/03/ Beyond the Standard Model: the clue from charm... Precision study of b and c decays deviations in expected behaviour of b and c quarks evidence for new physics + will elucidate new physics if found elsewhere Rare decays Mixing & CPV

48 Roma 15/03/ To use the full power of b and c decays, theoretical calculations of strong interactions must be used. The lattice gauge approach promises precision calculations that must be confronted with data Precision measurements of the D + and D s decay constants Semileptonic charm decay measurements V cd and V cs directly as well as input on hadronic matrix element

49 Roma 15/03/ Direct signatures for new physics in charm decays Bigi-Sanda hep-ph/ A priori it is quite conceivable that qualitatively different forces drive the decays of up-type and down-type quarks. More specifically, non-Standard-Model forces might exhibit a very different pattern for the two classes of quarks. Charm decays are the only up-type quarks that allow to probe this physics:non-strange light flavour hadrons do not allow for oscillations and top-flavoured hadrons do not even form in a practical way

50 Roma 15/03/ Mixing & CPV Motivation: suppressed in the charm sector in the SM. If measured, would suggest SM extension BaBar measurement 57.1 fb -1

51 Roma 15/03/ New limits expected by BaBar and Belle 95% C.L. CP violation –Direct CP violation in D 0 and D + –Indirect CP violation in D 0 decays –CP violation measurements exploiting the quantum coherence of the D 0 D 0 produced pair (3770) DD ; J P =1 - –CP violation asymmetry sensitivity A CP Cleo-c and Beauty Factories

52 Roma 15/03/ Rare decays FOCUS improved results by a factor of 1.7 –14: approaching theoretical predictions for some of the modes but still far for the majority CDF and D0 can trigger on dimuons promising Motivation: lepton number violation study investigation of long range effects and SM extension CDF Br(D )< % C.L. is the best limit for this mode (65 pb -1 data) Cleo-c sensitivity 10 -6

53 Roma 15/03/ Leptonic decays Motivations: decay constants measurements Lattice predicts f B /f D & f Bs /f Ds with small errors

54 Roma 15/03/ Hadronic and semileptonic decays semileptonic decays are the easiest way to determine CKM elements:QCD effects contained in form factors. Comparison with LGT and quark model calculations! Over constrain the Unitarity Triangle Inconsistencies New Physics

55 Roma 15/03/ Status of CKM Matrix Vub/Vub 17% l B l D Vcd/Vcd 7% l D Vcs/Vcs =11% l B D Vcb/Vcb 5% BdBd BdBd Vtd/Vtd =36% BsBs BsBs Vts/Vts 39% Vus/Vus =1% l Vud/Vud 0.1% e p n Vtb/Vtb 29% t b W Current V CKM From direct Measurements -no unitarity imposed CLEO-c will redefine 2 nd generation elements And enable improvements in 3 rd generation

56 Roma 15/03/ Potential Impact on V CKM Vub/Vub 17% l B l D Vcd/Vcd 7% l D Vcs/Vcs 11% l B D Vcb/Vcb 5% BdBd BdBd Vtd/Vtd 36% BsBs BsBs Vts/Vts 39% Vus/Vus 1% l Vud/Vud 0.1% e p n Vtb/Vtb 29% t b W CLEO-c will redefine 2 nd generation elements And enable improvements in 3 rd generation Current V CKM From direct Measurements -no unitarity imposed 2% 5% 3% Future V CKM

57 Roma 15/03/ Summary of reach

58 D. Bettoni - The Panda experiment 58 The GSI future project

59 D. Bettoni - The Panda experiment 59 Research activities at the future GSI facility Structure and dynamics of nuclei: Radioactive beams –Nuclear matter, nuclear astrophysics, fundamental symmetries Nuclear Matter and QGP: Relativistic HI Beams –Nuclear phase diagram,compressed nuclear/strange matter, deconfinement and chiral symmetry Hadron structure and quark gluon dynamics: Antiprotons –Non perturbative QCD, quark-gluon degrees of freedom, confinement and chiral symmetry, hypernuclear physics Physics of dense plasmas and bulk matter: Bunch Compression –Properties of high-density plasmas, phase transitions and equation of state, Laser-ion interactions with and in plasmas.

60 D. Bettoni - The Panda experiment 60 Antiproton Physics Program Charmonium Spectroscopy. Precision measurement of masses, widths and branching ratios of all (c c) states (hydrogen atom of QCD). Search for gluonic excitations (hybrids, glueballs) in the charmonium mass range (3-5 GeV/c 2 ). Search for modifications of meson properties in the nuclear medium, and their possible relation to the partial restoration of chiral symmetry for light quarks. Precision -ray spectroscopy of single and double hypernuclei, to extract information on their structure and on the hyperon-nucleon and hyperon-hyperon interaction.

61 D. Bettoni - The Panda experiment 61 The GSI p Facility HESR = High Energy Storage Ring Production rate 2x10 7 /sec P beam = GeV/c N stored = 5x10 10 p High luminosity mode Luminosity = 2x10 32 cm -2 s -1 dp/p~10 -4 (stochastic cooling) High resolution mode dp/p~10 -5 (el. cooling < 8 GeV/c) Luminosity = cm -2 s -1

62 D. Bettoni - The Panda experiment 62 QCD Systems to be studied in Panda

63 D. Bettoni - The Panda experiment 63 The detector Detector Requirements: –(Nearly) 4 solid angle coverage (partial wave analysis) –High-rate capability (2×10 7 annihilations/s) –Good PID (, e, µ,, K, p) –Momentum resolution ( 1 %) –Vertex reconstruction for D, K 0 s, –Efficient trigger –Modular design For Charmonium: –Pointlike interaction region –Lepton identification –Excellent calorimetry Energy resolution sensitivity to low-energy photons

64 D. Bettoni - The Panda experiment 64 Panda Detector Concept target spectrometer forward spectrometer micro vertex detector electromagnetic calorimeter DIRC straw tube tracker mini drift chambers muon counter Solenoidal magnet iron yoke

65 D. Bettoni - The Panda experiment 65

66 D. Bettoni - The Panda experiment 66 Cost - Schedules Civil Construction 225 M Accelerator Components 265 M Detectors 185 M (Panda 31 M) TOTAL 675 M HESR and 4 MeV e-cooling: end 2009 SIS200 and 8 MeV e-cooling: end 2011 Panda data taking ~2011 Activities in 2004 –Letter of Intent due end 2003 –Refine physics. Prepare physics book. GSI physics workshop. GSI Oct 2003 Frascati Workshop March 2004 –Finalize detector design. –Prepare TDR.

67 D. Bettoni - The Panda experiment 67 PANDA Collaboration At present a group of 150 physicists from 40 institutions of 9 Countries. Bochum, Bonn, Brescia, Catania, Cracow, Dresden, Dubna I + II, Edinburg, Erlangen, Ferrara, Frascati, Franhfurt, Genova, Giessen, Glasgow, KVI Groningen, GSI, FZ Jülich I + II, Los Alamos, Mainz, Milano, TU München, Münster, Northwestern, BINP Novosibirsk, Pavia, Silesia, Stockolm, Torino I + II, Torino Politecnico,Trieste, TSL Uppsala, Tübingen, Uppsala, SINS Warsaw, AAS Wien Spokesperson: Ulrich Wiedner - Uppsala Austria - Germany – Italy – Netherlands – Poland – Russia – Sweden – U.K. – U.S.

68 D. Bettoni - The Panda experiment 68 Attività dei Gruppi Italiani Ferrara (gruppo ex E835, attualmente in BaBar) –Partecipazione a Panda: fisica del charmonio, tracciamento –Attività prevista nel 2004 (0.2 FTE): partecipazione a gruppi di studio e riunioni di collaborazione; collaborazione nella scrittura del physics book (D.Bettoni editore della parte sul charmonio); collaborazione scrittura TDR; simulazione charmonio. Torino (gruppo Compass) –Partecipazione a Panda: rivelatore per µ (tipo RICHWall), DVCS, D-Y. –Attività prevista nel 2004 (1 FTE +1 dott.): partecipazione a gruppi di studio e riunioni di collaborazione; collaborazione nella scrittura del physics book e TDR; simulazione reazioni Drell-Yan. Trieste (gruppo Compass) –Partecipazione a Panda: RICH. –Attività prevista nel 2004 (0.2 FTE): partecipazione a gruppi di studio e riunioni di collaborazione


Scaricare ppt "Fisica Adronica D. Bettoni, S. Malvezzi, R. Mussa, F. Tessarotto, A. Zoccoli Gruppo di Lavoro della CSN1 Roma – 15/03/04."

Presentazioni simili


Annunci Google