Le funzioni Prof.ssa A. Sia.

Slides:



Advertisements
Presentazioni simili
DISEQUAZIONI Segno di un trinomio e disequazioni di 2° grado
Advertisements

Cosa sono? Come si risolvono?
"Il Problema non è un...PROBLEMA"
MATEMATICA PER L’ECONOMIA
Funzioni Una funzione (o applicazione) fra due insiemi A e B è una
LE EQUAZIONI DI SECONDO GRADO
Equazioni di primo grado
MATEMATICA PER L’ECONOMIA
MATEMATICA PER L’ECONOMIA
EQUAZIONI Prendiamo in considerazione delle funzioni reali in una variabile reale Una equazione è una uguaglianza tra due funzioni eventualmente verificata.
Relazione tra due insiemi:
DISEQUAZIONI IRRAZIONALI
= 2x – 3 x Definizione e caratteristiche
1 Istruzioni, algoritmi, linguaggi. 2 Algoritmo per il calcolo delle radici reali di unequazione di 2 o grado Data lequazione ax 2 +bx+c=0, quali sono.
LE FUNZIONI Definizione Campo di esistenza e codominio
Elementi di Matematica
Elementi di Matematica
Studio funzioni by Mario Varalta Studio funzioni by Mario Varalta.
CONCETTO DI FUNZIONE Una funzione f da X in Y consiste in:
EQUAZIONI DI PRIMO GRADO AD UNA INCOGNITA
EQUAZIONI DI PRIMO GRADO
LE EQUAZIONI DI SECONDO GRADO
Liceo Scientifico "A.Volta" Reggio Calabria
I Sistemi Lineari Molti, problemi per poter essere risolti, hanno bisogno dell’introduzione di uno o più elementi incogniti. Ad esempio consideriamo il.
Le equazioni lineari Maria Paola Marino.
FUNZIONE: DEFINIZIONE
A cura Prof. Salvatore MENNITI
Modelli simulativi per le Scienze Cognitive Paolo Bouquet (Università di Trento) Marco Casarotti (Università di Padova)
VALORE ASSOLUTO... (ovvero un ostacolo matematico!!!)
SSIS-Veneto Indirizzo FIM A.A
TEORIA EQUAZIONI.
Parabola Parabola.
Studio funzioni Premesse Campo esistenza Derivate Limiti Definizione di funzione Considerazioni preliminari Funzioni crescenti, decrescenti Massimi,
Lezione multimediale a cura della prof.ssa Maria Sinagra
Relazioni binarie.
Le funzioni Prof.ssa A. Sia.
Cosa significa la parola funzione?
Prof. Vincenzo Calamia Liceo Classico Alcamo
Funzioni Dati due insiemi non vuoti A e B,
TEORIA DEGLI INSIEMI INIZIO.
EQUAZIONI DI PRIMO GRADO
EQUAZIONI E DISEQUAZIONI
Le Funzioni Prof. Antonelli Roberto Prof. Antonelli R.
Lezione multimediale a cura della prof.ssa Maria A. Sinagra
Disequazioni di secondo grado
Limitati,Illimitati Aperti,Chiusi a seconda che un estremo o tutti e due siano + o - infinito a seconda che comprendano o no gli estremi Premesse Intervalli.
F U N Z I O N I Definizioni Tipi Esponenziale Logaritmica
DISEQUAZIONI DI II GRADO. Lo studio del segno di un trinomio Considerando che il coefficiente a sia sempre positivo cioè a>0 per risolvere le disequazioni.
Le funzioni.
6. LIMITI Definizione - Funzioni continue - Calcolo dei limiti
FUNZIONE: DEFINIZIONE Una FUNZIONE è una LEGGE che ad ogni elemento di un dato insieme A, detto DOMINIO, associa uno ed un solo elemento di un insieme.
Le funzioni goniometriche
FUNZIONE: DEFINIZIONE
LE EQUAZIONI Sono andato dal panettiere con 10 euro e ho comprato due pizzette. Esco con 6 euro: quanto costa una pizzetta?
Anno scolastico 201 /201 Keith Devlin Anno scolastico 201 /201 Stanislas Dehaene L'assorbimento di questo sistema ha inizio già nell'infanzia, ancor.
Analisi matematica Introduzione ai limiti
Elementi di Topologia in R
Definizione Classificazione Dominio e Codominio Proprietà
Equazioni Che cosa sono e come si risolvono. Osserva le seguenti uguaglianze: Equazioni Che cosa sono Queste uguaglianze sono «indeterminate», ovvero.
Equazioni algebriche sul campo dei numeri reali. Generalità.
INTRODUZIONE Il progetto è rivolto ad alunni che frequentano il biennio del Liceo Scientifico, gli argomenti affrontati sono di notevole importanza per.
Raccogliamo x al primo membro e 2 al secondo:
ESPONENZIALI E LOGARITMI
Disequazioni di secondo grado Teoria ed applicazioni Classe2ai Prof. Govoni.
FUNZIONI MATEMATICHE DANIELA MAIOLINO.
Unità didattica progettata e realizzata dalle docenti: Rita Montella, Gelsomina Carbone classi II e II A Anno Scolastico 2007/2008 Ha collaborato alla.
 Scale di Misura 4Scala nominale 4Scala ordinale Argomenti della lezione.
EQUAZIONI Di primo grado ad una incognita Prof. Valletti.
Classe II a.s. 2010/2011 Prof.ssa Rita Schettino
Transcript della presentazione:

Le funzioni Prof.ssa A. Sia

Definizione: Le funzioni sono uno dei concetti più importanti della matematica. Ma che cosa è una funzione? Possiamo intenderla come un apparecchio di Input-Output. Prende un oggetto come Input e fornisce un oggetto come Output. E questo avviene secondo una precisa (univoca) relazione. Per noi "oggetto" per adesso significa "numero". Quindi una funzione per noi per ora è una macchina che prende un numero come Input e lo  trasforma in un numero come Output. Ecco una macchina del genere: Prof.ssa A. Sia

Per scrivere le funzioni in matematica esistono 2 notazioni: La macchina eleva al quadrato il numero dato. L'idea è di assegnare a ciascun numero il suo quadrato. La relazione è dunque "elevare al quadrato". Così abbiamo definito una funzione. Potremmo chiamarla "funzione quadrato". Per scrivere le funzioni in matematica esistono 2 notazioni: Quella con la freccia f: x -> x2 Quella con l’uguale f(x)= x2 Prof.ssa A. Sia

Definizione di funzione: Dati due insiemi A e B, si dice funzione (f: A B) una relazione di natura qualsiasi tale che ad ogni elemento di A associa uno ed uno solo elemento di B Si possono considerare funzioni anche per oggetti matematici diversi dai numeri. Per definire una funzione abbiamo bisogno di due insiemi che chiamiamo A e B. Noi ci occuperemo e studieremo solo funzioni numeriche ovvero funzioni reali di variabile reale 3 4 5 7 16 9 49 25 1 A B C D E 3 2 5 4 1 Prof.ssa A. Sia

Ogni volta che il valore di una grandezza dipende dal valore di un'altra grandezza, si ha una funzione. La natura e la nostra vita sono piene di questo tipo di dipendenze La grandezza... è una funzione... posizione di un veicolo del tempo energia di un asteroide in caduta della sua velocità precipitazioni medie della posizione sul nostro pianeta quantità di vernice necessaria dell'area della superficie da verniciare importo sul libretto di risparmio (su cui sono depositati 1000 Euro) dopo un anno degli interessi quantità di funghi raccolti delle precipitazioni nei giorni precedenti Prof.ssa A. Sia

Funzione non iniettiva Una funzione da A in B si dice iniettiva se ad elementi distinti di A corrispondono elementi distinti di B. Si può anche scrivere "x1,x2 ÎA x1¹x2Þf(x1)¹ f(x2) Se la funzione è iniettiva noto un elemento di arrivo yÎB da questo è possibile risalire in modo univoco all'elemento  xÎA Funzioni iniettive: Una funzione da A in B si dice iniettiva se ad elementi distinti di A (Dominio) corrispondono elementi distinti di B (Codominio). Si può anche scrivere x1≠x2  A -> f(x1) ≠ f(x2)  B Funzione iniettiva Funzione non iniettiva Prof.ssa A. Sia

Funzione non suriettiva Una funzione da A in B si dice iniettiva se ad elementi distinti di A corrispondono elementi distinti di B. Si può anche scrivere "x1,x2 ÎA x1¹x2Þf(x1)¹ f(x2) Se la funzione è iniettiva noto un elemento di arrivo yÎB da questo è possibile risalire in modo univoco all'elemento  xÎA Funzioni suriettiva: Una funzione da A a B si dice suriettiva se ogni elemento di B è immagine di  almeno un elemento di A. Ogni elemento del codomino deve avere almeno un corrispondente nel dominio Funzione suriettiva Funzione non suriettiva Prof.ssa A. Sia

Una funzione da A in B si dice iniettiva se ad elementi distinti di A corrispondono elementi distinti di B. Si può anche scrivere "x1,x2 ÎA x1¹x2Þf(x1)¹ f(x2) Se la funzione è iniettiva noto un elemento di arrivo yÎB da questo è possibile risalire in modo univoco all'elemento  xÎA Funzioni biettiva: Una funzione da A a B che sia contemporaneamente iniettiva e suriettiva viene detta  corrispondenza biunivoca. Ad ogni elemento del dominio corrisponde uno e uno solo elemento del codominio Funzione biettiva Prof.ssa A. Sia

Prof.ssa A. Sia

cosa succede se dobbiamo risolvere delle disequazioni in cui una o più espressioni contenenti l’incognita compaiono in valore assoluto? Per risolvere queste disequazioni è necessario studiare prima di tutto il segno di ciascuna espressione in cui compare il valore assoluto i valori che si possono attribuire all’incognita restano divisi in intervalli, in base al valore assoluto, e l’equazione data assume “forma diversa” nei suddetti intervalli Prof.ssa A. Sia

Esempio disequazione con valore assoluto: studiamo l’espressione con il v.a. |x-1|>4-2x Quando |x-1|>=0 ossia x>=1 il valore assoluto vale x-1 quando |x-1|<0 ossia x<1 il valore assoluto vale -x+1 quindi |x-1| assume valori diversi nei due intervalli 1 -x+1 x+1 e di conseguenza anche l’equazione assume “forme diverse” in ciascuno di questi intervalli: Quando x>=1 l’equazione diventa x - 1 > 4 - 2x quando x<1 l’equazione diventa - x + 1 > 4 - 2x Prof.ssa A. Sia

Perciò risolvere l’equazione con il valore assoluto |x-1|>4-2x vuol dire risolvere due sistemi, contenenti le “forme diverse” dell’equazione negli intervalli determinati dal v.a. e la soluzione finale si ottiene unendo le soluzioni dei due sistemi Prof.ssa A. Sia

e se i valori assoluti nella disequazione sono due oppure più di due? Niente paura.. il ragionamento da seguire non cambia!! Si studiano i singoli v.a., si ricavano le “forme diverse” di equazioni e si ricavano i sistemi da risolvere!! Occhio, però, i sistemi da risolvere aumentano! L’unione di tutte le soluzioni dei sistemi determinerà la soluzione finale! Prof.ssa A. Sia

http://precorso. dicom. uninsubria. it/lezioni/funzioni http://precorso.dicom.uninsubria.it/lezioni/funzioni.htm#WasisteineFunktion Prof.ssa A. Sia