Lezione 16 23 marzo 2015. nota su "a meno che" A meno che (non) = oppure Il dolce lo porto io (I) a meno che (non) lo porti Mario (M) I  M   I  M.

Slides:



Advertisements
Presentazioni simili
Scienza del ragionamento corretto Elaborato da Manuela Mangione
Advertisements

Sarai ammesso a sociologia o se hai frequentato
Sommario Nelle lezioni precedenti abbiamo introdotto tutti gli elementi che formano un particolare tipo di linguaggio logico, denominato linguaggio predicativo.
Le parti del discorso logico e informatico
Deduzione naturale + Logica & Calcolabilità
Algoritmi e Dimostrazioni Stefano Berardi
Caratteri e stringhe di caratteri
Intelligenza Artificiale 1 Gestione della conoscenza lezione 8
Sistemi basati su conoscenza Conoscenza e ragionamento Prof. M.T. PAZIENZA a.a
Corso di Informatica (Programmazione)
CORSO DI PROGRAMMAZIONE II Introduzione alla ricorsione
LOGICA E MODELLI Logica e modelli nel ragionamento deduttivo A cura di Salvatore MENNITI.
Qualche esempio di tableaux
Semantica per formule di un linguaggio proposizionale p.9 della dispensa.
Alla scoperta di una regolarità…
Corso di Matematica Discreta I Anno
Intelligenza Artificiale - AA 2001/2002 Logica formale (Parte 2) - 1 Intelligenza Artificiale Breve introduzione alla logica classica (Parte 2) Marco Piastra.
IL GIOCO DELLA LOGICA.
Importanza DTD La DTD (Document Type Definition) consente di dichiarare in maniera univoca la struttura di markup mediante la definizione dello schema.
Prof. Marina BARTOLINI . “Liceo Maccari” Frosinone
Dalla logica naturale alla logica formale
Lezione multimediale a cura della prof.ssa Maria Sinagra
Logica Matematica Seconda lezione.
Si ringraziano per il loro contributo gli alunni della
INFORMATICA MATTEO CRISTANI. INDICE CICLO DELLE LEZIONI LEZ. 1 INTRODUZIONE AL CORSO LEZ. 2 I CALCOLATORI ELETTRONICI LEZ. 3 ELEMENTI DI TEORIA DELL INFORMAZIONE.
Pierdaniele Giaretta Primi elementi di logica
LA LOGICA Giannuzzi Claudia Stefani Simona
Agenti logici: calcolo proposizionale Maria Simi a.a. 2008/2009.
BIOINFO3 - Lezione 201 Come in ogni corso di introduzione ad un linguaggio di programmazione, proviamo a scrivere lormai celebre primo programma di prova.
Corso di logica matematica
PRESENTAZIONE DI RAGANATO ROBERTO, BISCONTI GIAMMARCO E
La logica è lo studio del ragionamento.
Logica Lezione Nov 2013.
Logica A.A Francesco orilia
F. Orilia Logica F. Orilia
Logica Lezione ESAME FINALE Si svolgerà dalle 10 alle 11 Mercoledì 18 Dicembre in AULA A Si raccomanda di venire con il libretto.
Logica F. Orilia.
Logica Lezioni Lunedì 18 Nov. Annuncio E' possibile che dovrò rinviare delle lezioni della prossima settimana. Tenete d'occhio gli annunci.
Logica F. orilia. Lezz Lunedì 4 Novembre 2013.
EQUAZIONI di primo grado numeriche intere con una incognita.
Logica Lezz /12/13. Predicato di identità Utilizziamo la "infix notation" Nuove formule atomiche: a = b, c = d, ecc. Nuove fbf:  x x =
Logica A.A Francesco orilia
Logica A.A Francesco orilia
La logica Dare un significato preciso alle affermazioni matematiche
Logica Lezz Nov Reiterazione (RE) P |- P 1 P A 2 P & P 1,1, &I 3 P 2, & E.
Logica Orilia. Lezz Nov Ancora sugli alberi di refutazione verifica dello statuto logico di una singola fbf con gli alberi di refutazione:
Logica Lezione Nov
Esecuzione di un Programma [P] Una computazione corrisponde al tentativo di dimostrare, tramite la regola di risoluzione, che una formula (goal) segue.
AOT Lab Dipartimento di Ingegneria dell’Informazione Università degli Studi di Parma Intelligenza Artificiale Rappresentazione della Conoscenza e Ragionamento.
Conversione binario-ottale/esadecimale
La logica degli enunciati interamente realizzata da GIANNUZZI SILVIA
Logica Lez Dicembre Regola  E  xFx è come una disgiunzione infinita e quindi questa regola è analoga a vE Guardare insieme regola a p. 202.
Metodologia della ricerca e analisi dei dati in (psico)linguistica 24 Giugno 2015 Statistica inferenziale
Forma normale delle equazioni di 2° grado Definizione. Un'equazione di secondo grado è in forma normale se si presenta nella forma Dove sono numeri.
Analisi matematica Introduzione ai limiti
Ontologia analitica Lezz Lezione 13 7/3/16.
Introduzione alla LOGICA MATEMATICA Corso di Matematica Discreta. Corso di laurea in Informatica. Prof. Luigi Borzacchini III. La logica delle proposizioni.
STUDIO DI UNA DISEQUAZIONE DI SECONDO GRADO
Logica Lezione 8, DISTRIBUIRE COMPITO 1.
Logica Lezione 19, Distribuire compito 3 DATA esame in classe intermedio: Lunedì 20 aprile.
Logica Lezione 11, Annuncio Non si terrà la lezione di Lunedì 16 Marzo.
Logica Lez. 5, Varzi su affermazione del conseguente Malgrado alcuni esempi di questa forma siano argomentazioni valide, altri non lo sono.
INSIEMI E LOGICA PARTE QUARTA.
Logica Lezz
Logica Lezione
Logica Lezz
Logica Lezioni
Logica Lezioni
Logica Lezioni
Logica Lezioni 16-.
Transcript della presentazione:

Lezione marzo 2015

nota su "a meno che" A meno che (non) = oppure Il dolce lo porto io (I) a meno che (non) lo porti Mario (M) I  M   I  M  I  M la negazione è pleonastica, paragonare a: "non ho detto niente" = "non ho detto alcunché"

Esempio 4.21 p. 106 Questo esempio, oltre a mostrare l'uso della regola di intro della negazione, illustra una strategia: se abbiamo a disposizione una disgiunzione, tipicamente è utile cercare di dimostrare che entrambi i disgiunti implicano la conclusione desiderata. In questo caso, cerchiamo di ottenere questa conclusione con la regola di intro della neg.

Esercizio risolto 4.23  (P & Q) |–  P   Q Strategia: dimostriamo per assurdo e quindi ipotizziamo; (1)  (  P   Q) Per ottenere una contraddizione cerchiamo di dimostrare l'opposto della nostra premessa, ossia P & Q Dobbiamo quindi dimostrare una congiunzione. Per farlo, dobbiamo dimostrare entrambi i congiunti: P, Q Ma come? Per assurdo, ossia prima ipotizzando  P, poi  Q In entrambi i casi, grazie alla regola  I ottengo una contraddizione

Esercizio risolto 4.23 Dimostrare:  (P & Q) |–  P   Q Soluzione

Strategie dimostrative (1) Per dimostrare una formula atomica: in mancanza di altre strategie, ipotizzare la negazione della conclusione per ottenere la sua doppia negazione tramite ∼ I, quindi applicare ∼ E. (2) Per dimostrare una negazione: assumere per ipotesi la conclusione senza il segno di negazione per ottenere un assurdo, quindi applicare ∼ I. (3) Per dimostrare una congiunzione: dimostrare ciascuno dei congiunti separatamente e poi congiungerli mediante &I.

Strategie dimostrative (ii) (4) Per dimostrare una disgiunzione: provare a derivare uno dei disgiunti per applicare ∨ I; se questa strategia fallisce, comportarsi come nel caso delle fbf atomiche, cioè assumere la negazione della conclusione e poi applicare ∼ I e ∼ E. (5) Per dimostrare una condizionale: ipotizzare l’antecedente e derivare il conseguente, poi applicare →I. (6) Per dimostrare una bicondizionale: usare →I due volte per dimostrare i condizionali necessari a ottenere la conclusione per ↔I.

Strategie dimostrative (iii) Aggiungerei: se tra le premesse è disponibile una disgiunzione P v Q e bisogna dimostrare C, provare a dimostrare sia P -> C che Q -> C e poi applicare vE

Logica Lezioni 17-18,

Sommario delle 10 regole di base Guardare insieme la tabella riassuntiva 4.2 a p. 118

Esempio per sostituzione Un esempio per sostituzione di una fbf o di una forma argomentativa è il risultato della sostituzione di zero o più lettere enunciative con fbf qualsiasi, anche complesse, purché ogni occorrenza della stessa lettera venga sostituita dalla stessa fbf Diciamo zero o più’ per permettere a ogni forma di valere come esempio per sostituzione di se stessa. Esempio...

P → Q, ∼ Q |– ∼ P Sostituzioni: P = (P ∨ N) Q = ∼ S (P ∨ N) → ∼ S, ∼∼ S |– ∼ (P ∨ N)

Regole derivate Se è valida una certa forma argomentativa P1,..., Pn |– C, sarà valido qualsiasi esempio per sostituzione P1*,..., Pn* |– C* di quella forma Motivo: potrei ripetere gli stessi passi dimostrativi che mi hanno condotto a C da P1,... Pn, questa volta per ottenere C* da P1*,..., Pn* Quindi la dimostrazione di una forma argomentativa genera una corrispondente regola DERIVATA

Esempio: abbiamo dimostrato (es. 4.18) che questa forma è valida: P → Q, ∼ Q |– ∼ P Allo stesso modo potremmo dimostrare la validità di qualsiasi esempio per sostituzione di tale forma. Quindi posso assumere questa regola derivata: Da una fbf della forma φ → ψ e ∼ ψ, (è lecito) inferire ∼ φ.

regole derivate notevoli Alcune regole derivate sono particolarmente utili e intuitive. Gli è stato quindi assegnato un nome ed è utile conoscerle e imparare a usarle per abbreviare le dimostrazioni. Quella che abbiamo appena visto viene chiamata Modus tollens (MT): MT Modus tollens: Da una fbf della forma φ → ψ e ∼ ψ, (è lecito) inferire ∼ φ. v. tabella 4.3 p. 118

Esercizio risolto 4.25 Dimostrare: (P  N) →  S |–  S →  (P  N) Soluzione Per apprezzare l’utilità pratica delle regole derivate è sufficiente confrontare questa dimostrazione con quella riportata qui sotto, in cui si fa a meno del richiamo a MT e si riproduce invece per intero la derivazione del corrispondente esempio per sostituzione:

Regole ASS e DC ASS (assimilazione, assorbimento): v. 4.26, p. 110 DC (dilemma costruttivo): v. prossima diap.

Esercizio risolto 4.27 Dimostrare la regola derivata DC, cioè: P  Q, P → R, Q → S |– R  S Soluzione