Logica Lezione 11, 9-3-15. Annuncio Non si terrà la lezione di Lunedì 16 Marzo.

Slides:



Advertisements
Presentazioni simili
“ LAUREE SCIENTIFICHE ”
Advertisements

LOGICA.
LIMITI:DEFINIZIONI E TEOREMI
Sarai ammesso a sociologia o se hai frequentato
Le parti del discorso logico e informatico
Deduzione naturale + Logica & Calcolabilità
Introduzione alle “Ricerche sulla teoria della dimostrazione” (1930)
Algoritmi e Dimostrazioni Stefano Berardi
Intelligenza Artificiale 1 Gestione della conoscenza lezione 8
Sistemi basati su conoscenza Conoscenza e ragionamento Prof. M.T. PAZIENZA a.a
LOGICA E MODELLI Logica e modelli nel ragionamento deduttivo A cura di Salvatore MENNITI.
Qualche esempio di tableaux
Semantica per formule di un linguaggio proposizionale p.9 della dispensa.
Intelligenza Artificiale - AA 2001/2002 Logica formale (Parte 2) - 1 Intelligenza Artificiale Breve introduzione alla logica classica (Parte 2) Marco Piastra.
Prof. Marina BARTOLINI . “Liceo Maccari” Frosinone
Logica Matematica Seconda lezione.
Elementi di Logica matematica Prima parte
Si ringraziano per il loro contributo gli alunni della
INFORMATICA MATTEO CRISTANI. INDICE CICLO DELLE LEZIONI LEZ. 1 INTRODUZIONE AL CORSO LEZ. 2 I CALCOLATORI ELETTRONICI LEZ. 3 ELEMENTI DI TEORIA DELL INFORMAZIONE.
Pierdaniele Giaretta Primi elementi di logica
Agenti logici: calcolo proposizionale Maria Simi a.a. 2008/2009.
Interrogare il database
La logica di Frege Come sapete Frege è stato il maestro riconosciuto e ammirato da Wittgenstein (“le grandiose opere di Frege” dice nel Tractatus.
Congiunzione Disgiunzione Negazione Natalia Visalli.
A cura della Dott.ssa Claudia De Napoli
Corso di logica matematica
La rappresentazione delle informazioni in un computer Seconda parte.
La scomposizione col metodo di Ruffini
PRESENTAZIONE DI RAGANATO ROBERTO, BISCONTI GIAMMARCO E
La logica è lo studio del ragionamento.
Logica Lezione Nov 2013.
Logica A.A Francesco orilia
F. Orilia Logica F. Orilia
Algebra di Boole.
Logica F. Orilia.
Logica Lezioni Lunedì 18 Nov. Annuncio E' possibile che dovrò rinviare delle lezioni della prossima settimana. Tenete d'occhio gli annunci.
Logica F. orilia. Lezz Lunedì 4 Novembre 2013.
Didattica e Fondamenti degli Algoritmi e della Calcolabilità Terza giornata: principali classi di complessità computazionale dei problemi Guido Proietti.
Logica A.A Francesco orilia
Logica A.A Francesco orilia
La logica Dare un significato preciso alle affermazioni matematiche
Logica Lezz Nov Reiterazione (RE) P |- P 1 P A 2 P & P 1,1, &I 3 P 2, & E.
LOGICA.
Logica Orilia. Lezz Nov Ancora sugli alberi di refutazione verifica dello statuto logico di una singola fbf con gli alberi di refutazione:
Logica Lezione Nov
Esecuzione di un Programma [P] Una computazione corrisponde al tentativo di dimostrare, tramite la regola di risoluzione, che una formula (goal) segue.
AOT Lab Dipartimento di Ingegneria dell’Informazione Università degli Studi di Parma Intelligenza Artificiale Rappresentazione della Conoscenza e Ragionamento.
ELEMENTI DI LOGICA MATEMATICA
Logica Lezione 19 Compito in classe. Versione A A. Tradurre nel linguaggio della logica proposizionale gli enunciati delle seguenti argomentazioni.
Corso integrato di Matematica, Informatica e Statistica Informatica di base Linea 1 Daniela Besozzi Dipartimento di Informatica e Comunicazione Università.
La logica degli enunciati interamente realizzata da GIANNUZZI SILVIA
Forma normale delle equazioni di 2° grado Definizione. Un'equazione di secondo grado è in forma normale se si presenta nella forma Dove sono numeri.
LA LOGICA MATEMATICA.
Analisi matematica Introduzione ai limiti
Introduzione alla LOGICA MATEMATICA Corso di Matematica Discreta. Corso di laurea in Informatica. Prof. Luigi Borzacchini III. La logica delle proposizioni.
Logica A.A Francesco orilia
IL PIANO CARTESIANO E LA RETTA
Le proposizioni DEFINIZIONE. La logica è un ramo della matematica che studia le regole per effettuare ragionamenti rigorosi e corretti. DEFINIZIONE. Una.
Logica Lezione 8, DISTRIBUIRE COMPITO 1.
Introduzione alla LOGICA MATEMATICA Corso di Matematica Discreta. Corso di laurea in Informatica. Prof. Luigi Borzacchini II. La logica delle proposizioni.
Lezione marzo nota su "a meno che" A meno che (non) = oppure Il dolce lo porto io (I) a meno che (non) lo porti Mario (M) I  M   I  M.
Logica Lezione 19, Distribuire compito 3 DATA esame in classe intermedio: Lunedì 20 aprile.
D ALLA TEORIA ALL ’ ESERCIZIO Spunti di riflessione sul metodo.
Logica Lez. 5, Varzi su affermazione del conseguente Malgrado alcuni esempi di questa forma siano argomentazioni valide, altri non lo sono.
INSIEMI E LOGICA PARTE QUARTA.
Logica Lezz
Logica Lezioni 9-12.
Logica Lezz
Logica Lezioni
Logica Lezioni
Transcript della presentazione:

Logica Lezione 11,

Annuncio Non si terrà la lezione di Lunedì 16 Marzo

Decidibilità della log. prop. Le tavole di verità forniscono un criterio rigoroso e completo per determinare la validità o invalidità delle forme argomentative della logica proposizionale, così come per determinare la tautologicità, la contingenza vero- funzionale o l’inconsistenza di singole fbf. Esse costituiscono pertanto un vero e proprio algoritmo, cioè un test determinabile con precisione, eseguibile da un computer, e tale da fornire sempre un responso in un numero finito di operazioni finite. Quando esiste un algoritmo in grado di stabilire se le forme argomentative esprimibili in un sistema formale siano valide o no, il sistema in questione è detto decidibile. Le tavole di verità, in tal modo, garantiscono la decidibilità della logica proposizionale.

Alberi di refutazione Forniscono un altro algoritmo, più rapido. E' un metodo basato sul "ragionamento per assurdo": neghiamo la conclusione e verifichiamo se in tutte le situazioni possibili emerge una contraddizione. Per fare questa verifica cerchiamo esaustivamente tutte le situazioni (tutti i modi) in cui premesse + conclusione negata possono essere vere, scomponendo (mediante regole) le formule complesse fino ad arrivare a lettere enunciative e lettere enunciative negate

Ricerca di tutte le situazioni: esempio Consideriamo: (P & Q), (P v  Q) ci sono due situazioni (identificate attraverso lettere enunciative e lettere enunciative negate) (1) sono veri sia "P" che "Q" ed è vero " P" (2) sono veri sia "P" che "Q" ed è vero "  Q" (IMPOSSIBILE!) (NB: A rigore ci vogliono le virgolette, ma spesso le evitiamo per brevità) Procedendo in questo modo costruiamo un albero rovesciato. Quando ci sono due opzioni, costruiamo due rami distinti

Proviamo... Illustriamo il metodo con un esempio. Seguiremo delle regole meccaniche riassunte nella tavola 3.2 a p. 90. NB: E' opportuno numerare tutte le righe che via via si vanno aggiungendo. NON lo faremo in questo primo esempio.

Esercizio risolto 3.25 Costruire un albero di refutazione per stabilire se la forma seguente è valida: P  Q, P   Q |–  P

Cominciamo formando una lista composta dalle premesse e dalla negazione della conclusione: P  Q P  Q  P La formula ‘  P’ è equivalente alla più semplice ‘  P’, di conseguenza possiamo segnarla e scrivere ‘  P’ in fondo alla lista. Poi segniamo ‘P  Q’ ed evidenziamo le sue possibilità di verità tracciando due rami: Soluzione (1 di 3) Continua nella pagina seguente

Il cammino di sinistra contiene sia ‘P’ che ‘  P’, quindi lo chiudiamo con una ‘X’. Quello di destra, invece, resta aperto. Lo estendiamo con due rami, corrispondenti alle situazioni in cui ‘P  Q’ (che non avevamo ancora segnato) può essere vera: Soluzione (2 di 3) Continua nella pagina seguente

A questo punto notiamo che entrambi i cammini così ottenuti contengono formule fra loro inconsistenti: il primo contiene ‘P’ e ‘  P’; il secondo ‘Q’ e ‘  Q’. Questo vuol dire che possiamo chiudere anche questi due cammini con una ‘X’: Soluzione (3 di 3) Questo è l’albero completo. Dal momento che il tentativo di refutazione fallisce lungo tutti i cammini, la forma argomentativa originale è valida.

Il metodo degli alberi di refutazione (i) Per verificare la validità di una forma argomentativa mediante gli alberi di refutazione, si comincia formando una lista composta dalle sue premesse e dalla negazione della sua conclusione. Si procede mediante 10 regole (tavola 3.2, p. 90) (controllando di volta in volta quale di queste è applicabile) sino a ottenere soltanto lettere enunciative o negazioni di lettere enunciative oppure la X che indica contraddizione e chiude un cammino.

Il metodo definito precisamente (ii) Le 10 regole (v. p. 90): Negazione Negazione negata Congiunzione Congiunzione negata Disgiunzione Disgiunzione negata Condizionale Condizionale negato Bicondizionale Bicondizionale negato "Negazione" ci permette di chiudere un cammino quando c'è una contraddizione. Si deve sempre tentare di applicarla non appena abbiano ricavato una fbf della forma ̴  Le altre regole corrispondono a nove possibili tipi di fbf complessa che possiamo trovarci di fronte e ci permettono di estendere l'albero con formule più semplici.

Il metodo definito precisamente (iii) Quando nessuna regola è applicabile, l'albero si conclude. Se tutti i cammini si chiudono, la forma argomentativa è valida. Se qualche cammino rimane aperto, la forma argomentativa è invalida.

Precisazione NB: alla fine ciascun cammino contiene lettere enunciative "positive" (non negate) oppure negate. Un cammino corrisponde all'ipotesi che le sue lettere positive esprimono proposizioni vere e quelle negate proposizioni false (assegnazioni di valori di verità) Un cammino che rimane aperto è un'ipotesi COERENTE o POSSIBILE, secondo la quale tutte le fbf del cammino sono vere. Quando le cose stanno in quel modo, nella forma argomentativa in questione le premesse sono vere e la conclusione falsa: CONTROESEMPIO. Se non ci sono controesempi, la forma argomentativa è valida.

Esempio P → Q,  Q |– P P → Q  Q  P / \  P Q Ipotesi 1: Q è falso, P è falso, [quindi (P → Q) è vero] Ipotesi 2: Q è falso, P è falso, Q è falso X La prima ipotesi è coerente e quindi costituisce un controesempio alla validità dell'argomentazione

Logica Lezioni 12-13, 10/3/2015

verifica dello statuto logico di una singola fbf  con alberi di refutazione Il libro può confondere perché non presenta i passi della procedura con un ordine univoco. Consideriamo ̴  e applichiamo il metodo degli alberi. SI possono verificare 2 casi: Caso 1. Tutti i cammini si chiudono. Allora ̴  è inconsistente. Quindi  è tautologica, perché negando una tautologia otteniamo sempre un'inconsistenza. Caso 2. Rimangono dei cammini aperti; il che vuol dire che negando  non otteniamo inconsistenza, e quindi  NON è tautologia. Rimane da verificare se  è inconsistente o contingente. CONT...

Inconsistenza o contingenza? Per decidere se  è inconsistente o contingente, applichiamo il metodo degli alberi a  stessa. Caso 2a. Tutti i cammini si chiudono. Vuol dire che non ci sono situazioni in cui  è vera. Quindi,  è inconsistente. Caso 2b. Alcuni cammini restano aperti. Quindi,  non è inconsistente. Ma abbiamo già escluso (caso 1) che è una tautologia. Quindi  è contingente.

Esercizio (variante) Verificare lo statuto logico di:  (Q → (P &  P)) Soluzione L’albero comincia con la negazione della fbf in esame. Poiché però il cammino sul ramo sinistro rimane aperto, concludiamo che la fbf non è tautologica. Dobbiamo ancora verifcare se è inconsistente o contingente. CONTINUA...

3.33 (cont.) Per verificare se  (Q → (P &  P)) è inconsistente o contingente, costruiamo un albero per essa stessa.  (Q → (P &  P)) Q  (P &  P) / \  P   P P Rimangono dei cammini aperti (caso 2a; in questo particolare caso tutti i cammini sono aperti): la fbf è contingente

Esercizio risolto 3.29 Costruire un albero di refutazione per stabilire se la forma seguente è valida: P → Q |– P  Q Soluzione La regola della disgiunzione negata si applica alla riga 2 per ottenere le righe 3 e 4. Il cammino aperto nell’albero terminato indica che la forma è invalida e che ogni situazione in cui sia ‘P’ che ‘Q’ sono false è un controesempio.

Cap. 4 - Il calcolo proposizionale Nota sull'uso della parola "calcolo" Verranno usate le regole riassunte nella tabella 4.2 a p. 118

Esercizio risolto 4.1 Dimostrare:  P → (Q → R),  P, Q |– R Soluzione La prima premessa è un condizionale il cui antecedente è negato e il cui conseguente è a sua volta un condizionale. La riga 2 contiene l’antecedente. Perciò la derivazione del suo conseguente alla riga 4 è chiaramente un esempio di eliminazione del condizionale, così come il passo dalle righe 3 e 4 alla riga 5.

Esercizio risolto 4.3 Dimostrare: P & Q |– Q & P Soluzione L’ordine con cui otteniamo i due congiunti dalla congiunzione iniziale mediante &E è indifferente. Avremmo anche potuto scrivere ‘Q’ alla riga 2 e ‘P’ alla 3. Cìò avrebbe comunque consentito l’applicazione di &I per ottenere la conclusione alla riga 4

condizionale, congiunzione e disgiunzione Abbiamo visto la regola di eliminazione del condizionale (MP). Quella di introduzione è più complicata e la vedremo in seguito abbiamo visto le regole di eliminazione e introduzione della congiunzione. Adesso passiamo alle regole sulla disgiunzione

Intro della disgiunzione Per la regola di introduzione della disgiunzione guardiamo insieme dal libro l'esercizio 4.6, p. 97

Eliminazione della disgiunzione Idea di fondo: Se ho P v Q e posso derivare R sia da P che da Q, allora posso asserire R Vediamo la regola all'opera nel prossimo esempio

Esercizio risolto 4.9 Dimostrare: (P  Q) & (P  R), P → S, Q → S, P → T, R → T |– S & T Soluzione