Department of Experimental Oncology and Molecular Medicine

Slides:



Advertisements
Presentazioni simili
Centro Internazionale per gli Antiparassitari e la Prevenzione Sanitaria Azienda Ospedaliera Luigi Sacco - Milano WP4: Cumulative Assessment Group refinement.
Advertisements

Annual Burden of device 50 to 80 high-risk (class III) devices receive FDA approval annually 3500 medium-risk (class II) products are approved for marketing.
A. Nuzzo U.O. di Oncologia Medica ospedale Renzetti di Lanciano (CH)
Il linfonodo sentinella nei tumori del colon
TIPOLOGIA DELLE VARIABILI SPERIMENTALI: Variabili nominali Variabili quantali Variabili semi-quantitative Variabili quantitative.
Workshop 1: Lanziano Moderatori: E. Sagnelli, F. Suter Discussant: F.v. Schloesser Recupero immunologico e progressione clinica G. Liuzzi.
Case Based Reasoning
LHCf Status Report Measurement of Photons and Neutral Pions in the Very Forward Region of LHC Oscar Adriani INFN Sezione di Firenze - Dipartimento di Fisica.
REGIONE AUTONOMA FRIULI VENEZIA GIULIA PROTEZIONE CIVILE DELLA REGIONE
Richard Horton , Lancet 2005.
Carcinoma endometriale: la terapia adiuvante Quale e Quando
CANCER ARISING IN INTESTINAL ADENOMA: % OF LYMPH NODE METASTASIS Low risk0-7% High risk %
Metaclassificazione Giovedì, 18 novembre 2004 Francesco Folino ( Combinare Classificatori Lecture 8.
Metodi post-genomici in biochimica cellulare. Metodi post-genomici.
Cancer First-second most common cause of death in Western world One in 2-3 Western people will die of cancer.
Computational analysis of data by statistical methods
Computational analysis of data by statistical methods
XXV Riunione MITO Napoli 25 Giugno 2014 MITO2 miRNA microarray profile identifies a strong predictor of disease relapse in ovarian cancer XXV Riunione.
UP-TO-DATE SULL’ISCHEMIA CRITICA Influenza dei fattori di rischio Andrea Semplicini Medicina Interna 1 - Ospedale di Venezia Azienda ULSS 12 Veneziana.
Stefano Greggi, Cono Scaffa, Massimo Di Maio Chirurgia Oncologica Ginecologica Istituto Nazionale Tumori di Napoli Chirurgia di Intervallo Analisi retrospettiva.
Driver somatic mutations identify distinct disease entities within myeloid neoplasms with myelodysplasia by Luca Malcovati, Elli Papaemmanuil, Ilaria Ambaglio,
XXVI Riunione Nazionale MITO “OVARIAN CANCER AND GYNECOLOGICAL MALIGNANCIES INSIGHTS, DEBATES AND CONTROVERSIES” The MITO 16A&B: Progress Report Gennaro.
Michele Iacovacci (Napoli),
Stima della qualità dei classificatori per l’ analisi dei dati biomolecolari Giorgio Valentini
Advanced EC – Study on Cytoreductive Surgery
Appunti per ostetriche e non solo
XXIX^ Riunione Nazionale MITO – Sessione Data Manager 21 Giugno 2017
Mito 22: obiettivi endpoint primari endpoint secondari
UNIFIED MODELING LANGAUGE BASICS
MITO translational group
Lucia Del Mastro Gruppo Italiano Mammella - GIM Napoli 10 marzo 2017
Principi di ecotossicologia
>2 bilioni infetti 2008: 9.4 million new TB
Come e dove chiedere aiuto su tematiche CDISC: CDISC Forum, Linkedin e presentazione CDISC Italian UN Linkedin Group Riccardo Bezzo (Helsinn) Fabio Montanaro.
Advanced metastatic bre Ast Cancer
Impatto dello screening con HPV sulla prevenzione del cervicocarcinoma
Training & Development
Dichiarazione dei servizi di sito nel GOCDB
Stato dell’arte dei campioni MITO 16 A
Daniele Pedrini INFN Milano-Bicocca
2013 ACC/AHA Guidelines Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults.
Supporto statistico online
JetWalk: Agenda e review committee
Gigi Cosentino - LNL 20 ottobre 2016
Flipping.
NON MUSCOLAR INVASIVE BLADDER CANCER IN YOUNG PATIENTS BEFORE 30 YEARS: PROGNOSTIC FACTORS AND OUTCOME A. Salerno, S. Gerocarni Nappo, V. Pagliarulo, F.
EVEROLIMUS ASSOCIATO A DOSI MOLTO BASSE DI CYA DETERMINA ELEVATO GFR RISPETTO AL TRATTAMENTO STANDARD AIDA LARTI E. Bertoni, G. Rosso, L. Di Maria, M.
WARGI-DSS Andrea Sulis, Ph.D.
Heart failure and anemia: Effects on prognostic variables
The Influence of Mobility on Bone Status in Subjects with Rett Syndrome: a 10-Year Longitudinal Study 1C. Caffarelli, 1M.D. Tomai Pitinca, 1V. Francolini,
Enabling Cosmic Rays worldwide
Marzo 2018.
XXIX Riunione Nazionale MITO Alberto Farolfi, Ugo De Giorgi
Trapianto RIC nelle leucemie acute
Utility of baseline 18FDG-PET/CT functional parameters in defining prognosis of primary mediastinal (thymic) large B-cell lymphoma by Luca Ceriani, Maurizio.
Uo Oncologia faenza - dipartimento di Oncologia Ausl della romagna
The paper is available free of charge at:
Impact of New Drugs on the Long-Term Follow-Up of Upfront Tandem Autograft– Allograft in Multiple Myeloma  Luisa Giaccone, Andrea Evangelista, Francesca.
SWORD (School and WOrk-Related Dual learning)
Surgical Revascularization for Acute Coronary Insufficiency: Analysis of Risk Factors for Hospital Mortality  Biagio Tomasco, Antonino Cappiello, Rosario.
Diagnostic Performance of Low-Dose Computed Tomography Screening for Lung Cancer over Five Years  Giulia Veronesi, MD, Patrick Maisonneuve, DipEng, Lorenzo.
Lanosterol Synthase Genetic Variants, Endogenous Ouabain, and Both Acute and Chronic Kidney Injury  Rossella Iatrino, Chiara Lanzani, Elena Bignami, Nunzia.
Volume 124, Issue 5, Pages (May 2003)
A randomized study on eversion versus standard carotid endarterectomy: Study design and preliminary results: The Everest Trial  Piergiorgio Cao, MD, Giuseppe.
Participating groups:
Targeting resistant OC “a movie that start at the end”
CdS 2017: embargo fino a TAUP2017
Is there a role for soy isoflavones in the therapeutic approach to polycystic ovary syndrome? Results from a pilot study  Daniela Romualdi, M.D., Barbara.
MITO 31 A phase II trial of Olaparib in patients with recurrent ovarian cancer wild type for germline and somatic BRCA mutations: a MITO translational.
Andrea CORSONELLO IRCCS INRCA Cosenza
Transcript della presentazione:

Department of Experimental Oncology and Molecular Medicine Unit of Molecular Therapies XXIV Riunione MITO Pisa 4 Dicembre 2014 Development of a molecular predictor of disease recurrance by MITO2 miRNA profiling

2 MITO2 miRNA profiling Case material: 179 cases (of 226 profiled); hereafter OC179 Platform: Agilent SurePrint human miRNA arrays (mirBASE17.0) Main aims: Identification of groups of pts diverging from specific baselines Identification of miRNA-related subgroups of patients development of a prognostic model Overall design - training set: OC179 from MITO2 - validation set1: INT-CRO series (microarray data); hereafter OC263 - validation set2: TCGA (microarray data ); hereafter OC452

Case materials profiled for miRNA expression 2 Case materials profiled for miRNA expression

Case materials analyzed for miRNA expression 2 Case materials analyzed for miRNA expression Total number of cases profiled at INT-Milan: - 263 cases on Illumina Platform from INT and CRO - 179 cases on Agilent Platform from MITO2 In-silico Case Material analyzed - 452 cases on Agilent Platform from TCGA consortium Total: 894 cases “the greatest data set available for EOC miRNA profile” Data merging miRNA re-annotation: Illumina data 706 probes detected corresponding to 581 miRNA Agilent data –Milan 921 probes detected Agilent data –TCGA 661 probes detected Re-annotation on miRBase21 385 unique miRNA shared among all studies Batch effect Adjustment: the empirical Bayes (EB) method [Johnson, 2007]

Case materials analyzed for miRNA expression 2 Case materials analyzed for miRNA expression Training set: OC179 from MITO2 Median PFS 22.83 months Validation set1: OC263 from INT-CRO Median PFS 16 months Validation set2: OC452 from TCGA Median PFS 16.84 months

2 Identification of groups of patients diverging from specific miRNA baselines A) Data deconvolution: definition of a baseline group of patient with similar clinical characteristics. Definition of each patient “molecular distance” from baseline B) Dimensional shape recognition by topology networking Colored by deviation from baseline: Blue similar to baseline Red different from baseline

Approach for baseline definition on OC179 MITO2 dataset Stage III-IV patients with no residual disease (NED) and long PFS (no relapse) ID GF (Milano) Age (years) FIGO Grading Histo Residual PFS Status PFS Time (months) AP91 74 IV G3 serous none 73 AQ29 53 III 94 AR59 63 67 AQ67 58 Undif 100 AQ98 75 90 AP33 51 AR32 64 83 AR52 57

2 Baseline definition Patients NED and with long PFS (no relapse) A B Time (Months) Survival function P=0.0016 A B C OC179 MITO2 dataset Patients closer to baseline (A) have similar good prognosis

EOC subtypes validation in independent datasets 2 EOC subtypes validation in independent datasets OC263 –INT-CRO P=1.87E-04

2 Identification of OC Subtypes driven by miRNA expression patterns on OC179 MITO2 dataset Consensus matrix OC179 MITO2 dataset Silhouette Plot P=0.000742

EOC subtypes validation in independent datasets 2 OC263 –INT-CRO P=3.98E-14

2 Patients prognosis is correctly identified by both miRNA-driven sub classification

miRNAs differentially expressed between arm A vs. Arm C patients 2 miRNAs differentially expressed between arm A vs. Arm C patients Time (Months) Survival function P=0.0016 A B C OC179 MITO2 dataset

How to develop a clinically useful classifier? 2 E’ stato utilizzato un algoritmo che, sulla base dei dati di PFS della casistica MITO2 (OC179) e della relativa espressione dei 385 miRNAs rilevati, ha costruito un modello in grado di stratificare le pazienti ad alto e basso rischio di ricaduta. Il modello contiene 35 miRNAs che dopo cross-validazione (10-fold) mantengono il loro impatto prognostico anche se con rilevanza diversa. miRNAs la cui espressione è associata a prognosi sfavorevole (score superiore al cut-off di algoritmo) miRNAs la cui espressione è associata a prognosi favorevole (score inferiore al cut-off di algoritmo)

2 OC179 – MITO2 patients’ stratification according to the molecular classifier P=6.83E-4 high risk low risk Sample size  89 90 Median PFS (months) 17.99 37.9 HR= 0.5463 95% CI = 0.3829 to 0.7795

Molecular classifier validation on independent datasets 2 Molecular classifier validation on independent datasets

2 35 miRNA molecular classifier performance in defining patients’ prognosis

2 35 miRNA molecular classifier performance in defining patients’ prognosis

miRNAs identified with different strategies 2 miRNAs identified with different strategies

The miRNA molecular classifier is an independent prognostic marker 2 The miRNA molecular classifier is an independent prognostic marker Covariates: 35 miRNA model: above threshold cut-off vs. below threshold cut-off Stage: III-IV vs. I-II Grade: 3 vs. 1,2 Histology: serous vs. others Residual disease: >1cm vs. <1cm

MITO2 miRNA profiling: conclusions Punti di forza: prima meta-analysis di miRNAs su EOC EOC dataset al momento più numeroso (n=894; OC179 da MITO2; OC263 da INT-CRO; OC452 da TCGA) meta-analysis su diverse piattaforme gli approcci “baseline” e subtyping individuano un gruppo di tumori (cluster4/Cl4) con prognosi molto sfavorevole questo cluster si ritrova nei validation sets Punti critici: annotazioni diverse tra piattaforme riduzione dei miRNA comuni continuo aggiornamento miRBASE Take home message: analisi dei casi del clusterC/Cl4 individuazione di miRNA per validazione funzionale/biologica ClusterC/Cl4 quale gruppi di pazienti vanno utilizzati per la costruzione di un corretto modello prognostico?????