Fisiologia dell’apparato cardiovascolare:

Slides:



Advertisements
Presentazioni simili
Classe 5 A - Benedetti Claudia
Advertisements

Apparato Cardiocircolatorio
IL POTENZIALE D'AZIONE CARDIACO
Fisiologia dell’apparato cardiovascolare:
IL SISTEMA CARDIOCIRCOLATORIO E' un sistema di trasporto che mette in movimento un tessuto liquido (sangue), specializzato per la distribuzione di:
IL SISTEMA CARDIOCIRCOLATORIO E' un sistema di trasporto che mette in movimento un tessuto liquido (sangue), specializzato per la distribuzione di: gas.
Dottorato di ricerca in Fisiologia
Fisiologia dell’apparato cardiovascolare:
Introduzione alla fisiologia: concetto di omeostasi Scambi e trasporti
Il sistema cardiovascolare (cenni)
L’APPARATO CIRCOLATORIO
Anatomia Fisiologia V. Cava inf. V. Cava sup. A. Aorta V. Polmonari
APPARATO CARDIOVASCOLARE
L’apparato cardiocircolatorio
APPARATO CIRCOLATORIO
CAPILLARI e MICROCIRCOLAZIONE
IL SISTEMA CARDIOCIRCOLATORIO
Sistema Cardiocircolatorio Costituito da: Cuore, Vasi, Sangue
La conduzione elettrica nel cuore ne coordina la contrazione
Flusso sanguigno e regolazione della pressione arteriosa.
0 30 mmHg V. dx Atrio sx 15 Capillari Venule Vene A.polmonare A.piccole Caduta di pressione nel piccolo circolo.
Conoscere i valori di parametri fondamentali (es. pO 2, pCO 2, VFG) sapere le principali definizioni (volumi e capacità polmonari, clearance) conoscere.
Apparato circolatorio. IL cuore Composto da un tessuto muscolare detto Miocardio; È contenuto in un involucro chiamato Pericardio; È diviso in parte destra.
Figura 15.1 Attivazione elettrica del miocita cardiaco.
I SEGRETI DELL’ APPARATO CIRCOLATORIO
ALLA SCOPERTA DEL CORPO UMANO
APPARATO CIRCOLATORIO
ALLA SCOPERTA DELLA CIRCOLAZIONE
TESSUTO MUSCOLARE CARDIACO
APPARATO CIRCOLATORIO
13/11/
ACCOPPIAMENTO ECCITAZIONE-CONTRAZIONE
APPARATO CIRCOLATORIO - G e n e r a l i t à -
Biologia.blu C - Il corpo umano
VSM: vascular smooth muscle Contrazioni toniche lente e mantenute; contiene actina e miosina ma non le troponine; manca organizzazione in sarcomeri.
13/11/
Potenziale d'azione Potenziale d’azione
Cuore e Sistema Circolatorio – 1
Il sistema cardiovascolare
APPARATO CIRCOLATORIO - G e n e r a l i t à -
Il sistema circolatorio
Si è ipotizzato che il potenziale di membrana fosse un potenziale di Equilibrio del K descritto dall’eq. di Nerst : Em= -RT/ZF 2.3log [K]i / [K]o.
L’APPARATO CIRCOLATORIO
L’apparato cardiocircolatorio
La circolazione sanguigna
L’apparato cardiocircolatorio
Grande circolazione La grande circolazione si svolge tra il cuore e tutte le cellule del nostro corpo. La sua funzione è quella di rifornire le cellule.
1.
Arterie, vene, capillari, sinusoidi e vasi linfatici
ACCOPPIAMENTO ECCITAZIONE-CONTRAZIONE
Apparato respiratorio e Cardiocircolatorio-IB sportivo.
η=viscosità del liquido
Fisiologia dell’apparato cardiovascolare:
Le 4 fasi principali del ciclo cardiaco Le 7 fasi del ciclo cardiaco I° stato di attività del miocardio II° stato delle valvole La contrazione AD.
L’APPARATO CIRCOLATORIO
Arterie, vene, capillari, sinusoidi e vasi linfatici
Canali ionici come bersagli molecolari dei farmaci
L’APPARATO CIRCOLATORIO
TEORIA DEL MOVIMENTO UMANO PARTE PRIMA
Schema del cuore.
La doppia circolazione
L’APPARATO CIRCOLATORIO
L’apparato cardiocircolatorio
SCIENZE MOTORIE E SPORTIVE-IA sportivo
13/11/
Sistema circolatorio Curtis et al. Invito alla biologia.azzurro © Zanichelli editore 2015.
IL POTENZIALE D’AZIONE
L’APPARATO CIRCOLATORIO
Transcript della presentazione:

Fisiologia dell’apparato cardiovascolare: Introduzione storica (W. Harvey) Definizione Elementi costitutivi Modello semplificato Classificazione composizione e funzione dei vasi Caduta di pressione nel sistema Velocità del sangue nel circuito Volume di sangue e sua distribuzione: compliance e capacitanza Pressione circolatoria media La pompa: struttura macroscopica del cuore Valvole cardiache Pareti delle quattro camere Potenziale d’azione cardiaco Variazioni di eccitabilità: periodi refrattari Cellule nodali e potenziale di pacemaker Determinazione della frequenza cardiaca La conduzione nel cuore

STORIA: La fisiologia è una scienza sperimentale: nulla è dato per scontato! Esempio: la circolazione del sangue Fino al XVII° secolo vigevano le teorie fondate sulla filosofia aristotelica, secondo cui la natura è formata di 4 elementi (aria, acqua, fuoco, terra). Il corpo umano è una fucina che fabbrica in continuazione umori cattivi, che devono essere eliminati e produce il calore necessario alla vita. Il cuore è una pompa (già allora) che spinge il sangue, continuamente formato dal fegato: la metà destra nelle vene che si distribuiscono alla cute per disperdere gli umori maligni, la metà sinistra nelle arterie per diffondere il calore formato dai polmoni, ritenuti una fornace

IL SISTEMA CARDIOCIRCOLATORIO E' un sistema di trasporto che mette in movimento un tessuto liquido (sangue), specializzato per la distribuzione di: gas respiratori (ossigeno e anidride carbonica), ioni, materiali nutritizi (glucidi, aminoacidi, lipidi), prodotti di scarto del metabolismo cellulare, proteine, messaggeri chimici (ormoni), acqua, calore.

ELEMENTI COSTITUTIVI: pompa cardiaca (doppia), tubi, elementi filtranti. Due sistemi in serie: circolo sistemico, costituito da numerosi sistemi (distretti circolatori) in parallelo e circolo polmonare (distretto unico).

MODELLO SEMPLIFICATO DEL SISTEMA CIRCOLATORIO Cuore pompa Vene vasi di capacitanza Arterie vasi di trasporto 20 : 1 venule arteriole Capillari vasi di scambio Sangue tessuto liquido Vasi di resistenza

PROPRIETA' FISICHE DEL SANGUE rilevanti per il funzionamento del sistema: volume: determina la pressione di riempimento del sistema circolatorio; viscosità: dipende dal contenuto proteico (componente poco variabile) e dall'ematocrito; la viscosità relativa del sangue rispetto all’acqua è di 3,5-4,5; La viscosità stabilisce la pressione che il cuore deve generare per mettere in movimento il sangue.

I VASI. La loro struttura non è omogenea e la differenziazione funzionale dipende dalla struttura. Sono elementi costitutivi comuni della parete dei vasi: l'endotelio, con la sua membrana basale; la media, contenente fibre muscolari lisce, fibre elastiche e fibre collagene in diverse proporzioni; l'avventizia, contenente tessuto connettivo lasso, terminazioni nervose (simpatiche) e vasi (vasa vasorum).

Gli elementi della media possono essere disposti su più strati e la direzione delle fibre (muscolari ed elastiche) può essere circolare o spirale, fino a diventare quasi longitudinale.

Componenti della parete arterie Componenti della parete Avventizia f. connettive f. elastiche f. muscolari lisce membr. basale cell. endoteliali arteriole capillari venule vene

MODELLO SEMPLIFICATO DEL SISTEMA CIRCOLATORIO Cuore pompa Vene vasi di capacitanza Arterie vasi di trasporto 20 : 1 venule arteriole Capillari vasi di scambio Sangue tessuto liquido Vasi di resistenza

ARTERIE: di grosso calibro; prevale la componente elastica; funzione: mantenimento della pressione in diastole (effetto mantice: windkessel);

MODELLO SEMPLIFICATO DEL SISTEMA CIRCOLATORIO Cuore pompa Vene vasi di capacitanza Arterie vasi di trasporto 20 : 1 venule arteriole Capillari vasi di scambio Sangue tessuto liquido Vasi di resistenza

ARTERIOLE: meno di 200 micron; distinzione funzionale più che anatomica; prevale la componente muscolare, a disposizione circolare; funzione: determinazione della resistenza d'ingresso al microcircolo e della resistenza periferica totale;

MODELLO SEMPLIFICATO DEL SISTEMA CIRCOLATORIO Cuore pompa Vene vasi di capacitanza Arterie vasi di trasporto 20 : 1 venule arteriole Capillari vasi di scambio Sangue tessuto liquido Vasi di resistenza

CAPILLARI: meno di 8 micron; parete costituita solo di endotelio e membrana basale; funzione: scambi (non possono avvenire negli altri distretti);

MODELLO SEMPLIFICATO DEL SISTEMA CIRCOLATORIO Cuore pompa Vene vasi di capacitanza Arterie vasi di trasporto 20 : 1 venule arteriole Capillari vasi di scambio Sangue tessuto liquido Vasi di resistenza

VENULE: parete relativamente muscolare; funzione: regolazione della resistenza postcapillare; deposito volume circolante: facilita ritorno venoso

MODELLO SEMPLIFICATO DEL SISTEMA CIRCOLATORIO Cuore pompa Vene vasi di capacitanza Arterie vasi di trasporto 20 : 1 venule arteriole Capillari vasi di scambio Sangue tessuto liquido Vasi di resistenza

VENE MEDIE E GRANDI: prevale progressivamente la componente collagene, con elementi muscolari; funzione: regolazione della capacitanza sistemica.

CIRCOLO POLMONARE: minori differenze fra arterie e vene; scarsa componente muscolare; mancano le arteriole (pressione più bassa).

PRESSIONE NEL CIRCOLO SISTEMICO: all'uscita dal cuore è pulsatile (80-120 mmHg; media 95); nelle grandi arterie diminuisce poco il valore medio e aumenta la pulsatilità; nelle arteriole c'è grande caduta di pressione (fino a 30-35 mmHg) e sparisce la pulsatilità; nei capillari, ulteriore caduta, fino a 10 mmHg; fino all'atrio destro ulteriore progressiva caduta fino a 0 mmHg.

Arterie piccole 120 mmHg 60 Aorta Arterie grandi Arteriole Capillari Venule V. sx Vene Atrio dx

Le arteriole sono i vasi di resistenza perché a questo livello è massima la caduta di pressione; inoltre, sono i principali regolatori della resistenza perché hanno muscolatura liscia abbondante e a disposizione circolare e sono riccamente innervate.

VELOCITA' DEL SANGUE NEL CIRCUITO: è inversamente proporzionale alla sezione totale di ogni compartimento: massima nell'aorta, ridotta nelle arteriole, molto bassa nei capillari; nelle vene che tornano al cuore la velocità va aumentando, ma non raggiunge quella dell'aorta perché la sezione delle grandi vene è maggiore.

capillari piccole arterie arteriole venule piccole vene grandi arterie Grandi vene Vene centrali aorta Dimostrazione schematica (non in scala) delle variazioni della sezione totale del letto vascolare a diversi livelli. Diminuisce il diametro dei singoli vasi, ma aumenta la sezione totale. A pari livello, la sezione delle vene è maggiore di quella delle arterie.

DISTRIBUZIONE DEL SANGUE: è funzione della capacitanza di ogni distretto: circa 4/5 sono contenuti nelle vene; una parte non trascurabile è contenuta nei capillari. DISTRIBUZIONE DEL VOLUME IN ECCESSO: il sistema circolatorio è disteso e pertanto gli elementi elastici sono in tensione e sviluppano pressione.

A cuore fermo, il circuito contiene una PRESSIONE CIRCOLATORIA MEDIA (anche detta sistemica media o pressione di riempimento) di 7 mmHg. Il volume di sangue che genera questa pressione si deve considerare come volume in eccesso il rapporto fra la componente venosa e arteriosa del volume in eccesso è di 20:1

MODELLO SEMPLIFICATO DEL SISTEMA CIRCOLATORIO Vene vasi di capacitanza Arterie vasi di trasporto 20 : 1 Pressione circolatoria media = 7 mmHg Volume in eccesso

L’inverso della compliance è la capacitanza: DP/DV Il rapporto fra volume in eccesso e pressione sviluppata si chiama complianza (compliance DV/DP): dipende dall'elasticità dei vasi. La compliance venosa è molto maggiore di quella arteriosa. La compliance del circolo polmonare è elevata in tutti gli elementi. L’inverso della compliance è la capacitanza: DP/DV

MODELLO SEMPLIFICATO DEL SISTEMA CIRCOLATORIO Cuore pompa Vene vasi di capacitanza Arterie vasi di trasporto 20 : 1 venule arteriole Capillari vasi di scambio Sangue tessuto liquido Vasi di resistenza

LA POMPA. La struttura del cuore comprende 4 cavità (atrii e ventricoli), separate da un setto in: metà destra, che riceve sangue venoso dalle vene sistemiche e lo pompa nell'arteria polmonare e metà sinistra che riceve sangue arterioso dalle vene plomonari e lo pompa nell'aorta

Il cuore è dotato di una coppia di valvole atrio-ventricolari (tricuspide e mitrale) e una coppia di valvole semilunari, che separano i ventricoli dalle rispettive arterie La presenza di valvole conferisce unidirezionalità al movimento del sangue Non esistono valvole fra le vene e gli atrii Il funzionamento delle valvole è passivo: si aprono e si chiudono seguendo gradienti di pressione.

Lo spessore della parete delle camere cardiache è proporzionale alla pressione che ogni camera sviluppa: sottile negli atri, più spesso nel ventricolo destro, molto più spesso nel ventricolo sinistro. Prima della nascita le pareti ventricolari hanno spessori simili perché a destra la pressione è elevata come a sinistra. Sono possibili variazioni sia patologiche (es. ipertrofia) sia fisiologiche (cuore d’atleta).

IL POTENZIALE D'AZIONE CARDIACO Si distinguono diversi tipi di cellule: nodali (nodo seno-atriale e nodo atrio-ventricolare); di conduzione (fascio di His e fibre di Purkinije); comuni o di lavoro. I meccanismi elettrici e di membrana sono simili a quelli delle altre cellule eccitabili: ci soffermeremo soprattutto sulle differenze.

MIOCARDIO COMUNE: potenziale in 5 fasi 0 - depolarizzazione rapida per apertura di canali per il sodio voltaggio-dipendenti 1 - parziale breve ripolarizzazione per aumento transitorio di conduttanza al cloro e al potassio

2 - plateau: potenziale stabile su valori leggermente positivi per circa 0.2 s; dovuto all'aumento della conduttanza al calcio (apertura di "canali lenti") e riduzione della conduttanza al potassio 3 - ripolarizzazione per progressivo aumento della conduttanza al potassio e chiusura dei canali lenti; 4 - potenziale di riposo, stabile a -90 mV.

4 - potenziale di riposo, stabile a -90 mV 4 - potenziale di riposo, stabile a -90 mV. Conduttanza al sodio molto scarsa; conduttanza al potassio elevata. La pompa Na+/K+ ristabilisce i gradienti di concentrazione 2 - plateau: potenziale stabile su valori leggermente positivi per circa 0.2 s; dovuto all'aumento della conduttanza al calcio (apertura di "canali lenti") e riduzione della conduttanza al potassio 0 - depolarizzazione rapida per apertura di canali per il sodio voltaggio-dipendenti Arresto per chiusura ritardata canali sodio 3 - ripolarizzazione per progressivo aumento della conduttanza al potassio e chiusura dei canali lenti; 1 - parziale breve ripolarizzazione per aumento transitorio conduttanza al cloro e al potassio .05 .10 .15 .20 .25 .30 .35 .40 .45 s -90 -45 45 mV

Durante il plateau ha luogo una corrente di calcio, molto importante per l'accoppiamento elettromeccanico e per la regolazione della contrattilità

Variazioni di eccitabilità durante il potenziale d'azione: periodi refrattari. La risposta meccanica compare durante il potenziale e ha circa la stessa durata: il cuore non può essere tetanizzato

contrazione Periodo refrattario assoluto Periodo refrattario relativo -90 -45 45 mV contrazione Periodo refrattario relativo Eccitabilità normale .05 .10 .15 .20 .25 .30 .35 .40 .45 s

CELLULE NODALI. Il funzionamento del cuore è automatico, perché le cellule nodali sono in grado di auto-eccitarsi ritmicamente: funziona da generatore (pace-maker) primario il nodo senoatriale perché è dotato di ritmicità a frequenza maggiore

Il potenziale d'azione delle cellule nodali ha le seguenti caratteristiche: 1 - minore negatività alla fine della ripolarizzazione (-60 mV), dovuta a più elevata conduttanza al sodio 2 - lenta depolarizzazione spontanea dopo la ripolarizzazione, fino al raggiungimento di un livello soglia (potenziale di pace-maker), dovuta a progressiva riduzione della conduttanza al potassio

3 - fase di salita del potenziale più lenta che nelle cellule di lavoro, per apertura solo di canali lenti 4 - assenza di plateau.

Miocardio di lavoro Cell. nodali prepotenziale

Salita lenta: canali Ca2+ Arresto ripolarizzazione: corrente Na+ Prepotenziale: diminuzione conduttanza K+ Ripolarizzazione: corrente K+

Determinazione della frequenza cardiaca: dipende dalla pendenza del potenziale di pace-maker e dal livello di ripolarizzazione (regolazione nervosa).

CONDUZIONE NEL CUORE: propagazione elettrotonica da cellula a cellula attraverso ponti laterali con giunzioni strette Importanza dell'ampiezza e della velocità della depolarizzazione nel determinare la velocità di conduzione

Vie di conduzione: fasci atriali funzionali, nodo AV, fascio di His, fibre di Purkinje, miocardio comune Variazioni della velocità di conduzione Determinazione dell'intervallo atrio-ventricolare

Osservare: sequenza temporale; variazione di morfologia