CILINDRO.

Slides:



Advertisements
Presentazioni simili
q carica distribuita uniformemente = Q/l densità lineare di carica
Advertisements

ESERCIZI CON I PRISMI CLASSE 3° GEOMETRIA
Applicazione di Pitagora sui poligoni con angoli di 45°
Formule dirette e inverse
Considera un quadrato inscritto in una circonferenza di raggio r
I poliedri.
L’area dei poligoni regolari
Teorema di Euclide altezza proiezione proiezione
SOLIDI DI ROTAZIONE SI OTTENGONO FACENDO RUOTARE UN POLIGONO, PER 3600, INTORNO AD UN SUO LATO.
I SOLIDI DI ROTAZIONE Cilindro e cono.
FLUSSO E CIRCUITAZIONE DEL CAMPO MAGNETICO
Il cilindro Il cilindro è un solido ottenuto dalla rotazione completa di un rettangolo attorno ad un suo lato altezza generatrice raggio.
Il cilindro Il cilindro è un solido ottenuto dalla rotazione completa di un rettangolo attorno al suo lato. La retta del lato attorno a cui ruota il rettangolo.
Campo elettrico generato da una distribuzione piana omogenea e infinita di carica Consideriamo il campo generato da una distribuzione piana, infinita e.
LE PIRAMIDI.
POLIGONI INSCRITTI E CIRCOSCRITTI
L’area del cerchio.
Hp p.s. cristallo =3 g/cm 3 h=12 cm r=9 cm Th S t, P Hp p.s. cristallo =3 g/cm 3 h=12 cm r=9 cm Th S t, P r=9cm r=9cm h=12 cm O O’ H.
L’area dei poligoni regolari
La similitudine.
Prismi e piramidi.
Solidi di rotazione.
I poliedri diagonale DEFINIZIONE. Un poliedro è la parte di spazio delimitata da poligoni posti su piani diversi in modo tale che ogni lato sia comune.
Triennio 1Preparazione giochi di Archimede - Triennio.
Il cilindro DEFINIZIONE. Si dice cilindro il solido generato dalla rotazione completa di un rettangolo attorno ad uno dei suoi lati. Analizzando la figura.
La goniometria si occupa della misura degli angoli e delle relative funzioni. La trigonometria studia i procedimenti di calcolo che permettono di determinare.
× = × ESEMPI DI LUOGHI GEOMETRICI Luoghi geometrici
Appunti sull’ Integrale Indefinito e Definito
L’equivalenza di figure piane
Poligoni inscritti e circoscritti
CIRCONFERENZA E CERCHIO
PROBLEMA DI TRIGONOMETRIA Giorgio Buffa 4H
Il cono.
Il cilindro.
ANGOLI ALLA CIRCONFERENZA
I poliedri diagonale DEFINIZIONE. Un poliedro è la parte di spazio delimitata da poligoni posti su piani diversi in modo tale che ogni lato sia comune.
Formule generali per il calcolo di superficie e volume di solidi a 2 basi by iprof.
Piramide.
Bergamini, Trifone, Barozzi – La matematica del triennio
1 La lunghezza della circonferenza
La circonferenza e il cerchio
Il cono.
Il teorema di Pitagora.
Piramide.
I solidi.
Formazione docenti – LIM
Cerchio e Circonferenza
Prof.ssa Carolina Sementa
Cerchio e Circonferenza
Circonferenza e cerchio
Quadrilateri Rettangolo.
Introduzione alla geometria
RIPASSO DI MATEMATICA.
L’area delle figure piane
Esempi di algoritmi.
La misura della circonferenza e del cerchio
CIRCONFERENZA E CERCHIO
La circonferenza e il cerchio
Il cilindro DEFINIZIONE. Si dice cilindro il solido generato dalla rotazione completa di un rettangolo attorno ad uno dei suoi lati. Analizzando la figura.
AREE DEI POLIGONI clic clic quadrato rettangolo triangolo
PROPONI UN TITOLO ALLA CONFIGURAZIONE
L’enunciato del teorema di Pitagora
Teorema di Pitagora C2 + c2 = i = i = 100.
Il cilindro.
(esempio: scomposizione della forza peso sul piano inclinato)
VERIFICHE.
Appunti di analisi matematica: Integrale Definito
Una presentazione di Enzo Mardegan
Transcript della presentazione:

CILINDRO

Sviluppo del CILINDRO

AREA DEL CILINDRO AREA DEL CERCHIO: AREA DEL RETTANGOLO:

CONO

Sviluppo del CONO

AREA DEL CONO AREA DEL CERCHIO: AREA DEL SETTORE CIRCOLARE: Per trovare l’arco di circonferenza calcolo la circonferenza della base: Per trovare l’apotema della superficie laterale uso il teorema di PITAGORA.

AREA DEL CONO AREA DEL SETTORE CIRCOLARE: Per trovare l’angolo del settore circolare calcolo la circonferenza grande: apotema e poi calcolo la proporzione: Per trovare l’area del settore circolare calcolo l’area grande: apotema

AREA DEL CONO AREA DEL SETTORE CIRCOLARE: e poi calcolo la proporzione: