Corso di Elettrotecnica Allievi aerospaziali

Slides:



Advertisements
Presentazioni simili
Il concetto di flusso di un vettore attraverso una superficie
Advertisements

Elettrostatica 3 23 maggio 2011
Fisica 2 Corrente continua
Fisica 2 Corrente continua
Corrente continua 2 6 giugno 2011
FENOMENI ELETTROMAGNETICI
Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_4a
Potenza volumica. Legge di Joule in forma locale
I CONDENSATORI Il condensatore
Versione aggiornata al 23 maggio 2013
Versione aggiornata al 13 maggio 2013
Corso di Elettrotecnica (Allievi aerospaziali)
Corso di Elettrotecnica (Allievi aerospaziali) Reti Elettriche Parte II Revisione aggiornata al 20 aprile 2011 (
Corso di Elettrotecnica (Allievi aerospaziali) Reti Elettriche Parte II Revisione aggiornata al 24 maggio 2011 (
Corso di Elettrotecnica Allievi aerospaziali
Corso di Elettrotecnica (Allievi aerospaziali)
Corso di Elettrotecnica (Allievi aerospaziali) Reti Elettriche Parte II Revisione aggiornata al 16 maggio 2011 (
Corso di Elettrotecnica (Allievi aerospaziali) Reti Elettriche Parte II Revisione aggiornata al 6 giugno 2012 (
Flusso Flusso del campo elettrico Superficie aperta Superficie chiusa
Induzione elettromagnetica: evidenza sperimentale
La corrente elettrica (1/2)
Campo magnetico generato da una corrente
Fenomeni elettrici Legge di Coulomb
Energia e potenza nei circuiti elettrici
Prof. Antonello Tinti La corrente elettrica.
Corrente elettrica Si consideri una sezione A di un conduttore e sia dq la carica elettrica totale che attraversa la sezione A in un intervallo di tempo.
La batteria della figura ha una differenza di potenziale di 10 V e i cinque condensatori hanno una capacità di 10 mF. Determinare la carica sui condensatori.
I conduttori in un campo elettrostatico
CAMPO MAGNETICO GENERATO
IL CAMPO ELETTROMAGNETICO LENTAMENTE DIPENDENTE DAL TEMPO
IL CAMPO ELETTROMAGNETICO RAPIDAMENTE DIPENDENTE DAL TEMPO
 RIASSUNTO DELLE PUNTATE PRECEDENTI
ELETTROOSTATICA IN “APPROCCIO GLOBALE” • Legge di Gauss;
Induzione Legge di Faraday E dS B x x x x x x x x x x E R B 1 E E.
Circuiti elettrici “stazionari”
Campi Conservativi sempre Sia una funzione scalare (x,y,z)
Magnetismo nella materia
Le grandezze fondamentali dellelettricità sono: la carica elettrica, la corrente elettrica e il voltaggio. La corrente (I) è definita come la quantità
Circuiti Elettrici.
Il campo magnetico prodotto da correnti continue
Corrente e resistenza Cap. 27 HRW
Strategie per la risoluzione di problemi sui circuiti elettrici
TRASFORMATORE (Parte II)
Campo elettromagnetico
Parte XVIII: Correnti Stazionarie
Elettrotecnica Anno accademico
CIRCUITI IN CORRENTE CONTINUA
Elettrotecnica Anno accademico
6. La corrente elettrica continua
Programma esame Fondamenti di Elettrotecnica (PRIMA PARTE) Prof : Antonio Luchetta.
La corrente elettrica Realizzazione a cura del Prof. Francesco Porfido.
Resistenze in serie e in parallelo
Corso di ELETTROTECNICA
CORRENTE ELETTRICA, LEGGE DI OHM, RESISTENZE IN SERIE E IN PARALLELO E LEGGI DI KIRCHOFF PER I CIRCUITI In un condensatore la carica Q = C DV che può accumulare.
Andrea Ventura Scuola Estiva di Fisica 2014
CORRENTE ELETTRICA Applicando una d.d.p. ai capi di un filo conduttore si produce un flusso di particelle cariche, cioè una corrente elettrica. Per convenzione,
Elettrotecnica Anno accademico
La corrente elettrica continua
Misure elettriche ed elettroniche
RETI ELETTRICHE Leggi di Kirchhoff.
Circuiti elettrici - Componenti reali
Unità H19 - Induzione e onde elettromagnetiche
11/05/20161/37 Corso di ELETTROTECNICA I metodi delle correnti cicliche e dei potenziali ai nodi Presentazione a cura del Prof. Alvise Maschio Dipartimento.
Induzione elettromagnetica
CARICA ELETTRICA strofinato con seta strofinata con materiale acrilico Cariche di due tipi: + Positiva - Negativa repulsiva attrattiva.
Corrente elettrica Cariche in movimento e legge di Ohm.
Corso di Elettrotecnica Allievi aerospaziali
Transcript della presentazione:

Corso di Elettrotecnica Allievi aerospaziali Reti Elettriche – Parte I Revisione aggiornata al 18-3-2013 (www.elettrotecnica.unina.it)

Oggetto del corso Studio delle reti elettriche - reti in regime stazionario - reti in regime lentamente variabile ed in particolare sinusoidale Elementi di impianti elettrici - il trasformatore - elementi di sicurezza elettrica

Supporti didattici Giulio Fabricatore: “Elettrotecnica ed applicazioni” Liguori Editore Appunti integrativi su: - Trasformatore - Esercizi numerici Slides del corso

Tipologia delle reti elettriche considerate Reti di bipoli Definizione preliminare di bipolo: Oggetto elettrico facente capo a due morsetti terminali A e B, che sono attraversati dalla corrente i e a cui è applicata la tensione v. Si considera il funzionamento dei singoli bipoli “a scatola chiusa”, partendo dalle relazioni tra v ed i.

Corrente elettrica, tensione elettrica e forza elettromotrice Richiami preliminari Corrente elettrica, tensione elettrica e forza elettromotrice

La corrente elettrica (di conduzione) Δq carica netta che, nell’intervallo di tempo Δt, transita nel verso diretto dalla sez. A alla sez. B attraverso la sez. S.

Vettore densità di corrente (di conduzione) Il vettore densità di corrente di conduzione da A verso B attraverso la superficie S è definito da:

Corrente elettrica in un conduttore filiforme Definizione di Ampére. In 2 conduttori filiformi, rettilinei, paralleli e indefiniti posti in aria circola la corrente di un A, se tra di essi si esercita una forza pari a 2·10-7 N per metro di lunghezza.

Misura della corrente (amperometro ideale) L’amperometro ha 2 morsetti,uno + ed uno - Misura della corrente da A verso B. Misura della corrente da B verso A.

Diversi tipi di corrente Corrente nei conduttori metallici, costituita da un flusso di elettroni (e=-1.6·10-19 coulomb) (1 coulomb=1 A * 1 sec) Corrente nei conduttori elettrolitici costituiti da un flusso di ioni positivi e negativi

La corrente nei semiconduttori Struttura cristallina del silicio Conduzione di tipo p (positiva) costituita da un flusso di “buchi”

La corrente di spostamento La corrente di spostamento jS attraverso una superficie S invariata nel tempo ed immersa in un mezzo lineare di costante dielettrica ε è data da: La quantità rappresenta il vettore densità di corrente di spostamento

Un esempio di corrente di spostamento v

La corrente totale La somma della corrente di conduzione i e della corrente di spostamento jS: itot=i+jS è detta corrente totale. Il corrispondente vettore densità è solenoidale: Pertanto la somma delle correnti di conduzione i e di spostamento jS uscenti dalla (o entranti nella) superficie chiusa Σ è nulla.

La tensione elettrica Data una linea ϒ di estremi A e B si dice tensione da A a B lungo ϒ, la quantità che rappresenta il lavoro compiuto dal campo elettrico per spostare l’unità di carica positiva da A a B lungo ϒ. L’unità di misura della tensione è il volt [V]. 1 volt=1 joule/coulomb. (1 coulomb =1 ampére·secondo). Se il campo elettrico è conservativo la tensione è

La tensione elettrica indipendente da γ. Il campo elettrico è dotato di potenziale: La d.d.p. tra A e B può essere formalmente indicata come

Misura della tensione elettrica (voltmetro ideale) Il voltmetro ha 2 morsetti,uno + ed uno - Misura della d.d.p. VAB Misura della d.d.p. VBA

Forza elettromotrice Si dice forza elettromotrice (f.e.m.) agente lungo una linea chiusa orientata γ la quantità scalare algebrica: Essa è diversa da zero solo se non è conservativo sulla linea γ o almeno su di una sua parte e quindi se γ è immersa in tutto o in parte in una regione dello spazio R sede di fenomeni fisici di trasformazione d’energia.

L’esempio della pila (funzionamento a vuoto) Sia KT la forza totale agente sull’unità di carica. dove è il campo elettrostatico creato dalla distribuzione di cariche sugli elettrodi e è il campo di natura

L’esempio della pila (funzionamento a vuoto) elettrochimica presente solo all’interno della soluz. elettrolitica,dove: Nell’aria si ha:

F.e.m derivante dall’induzione elettromagnetica Solenoidalità del vettore induzione magnetica

F.e.m derivante dall’induzione elettromagnetica Flusso concatenato con una linea chiusa orientata γ Per la solenoidalità del vettore induzione magnetica i due integrali di superficie estesi a S1 e S2 sono indipendenti dalla superficie purché questa sia orlata da γ. Dati il vettore induzione magnetica ed una linea chiusa orientata γ si definisce pertanto flusso di tale vettore concatenato con γ la quantità: in cui Sγ è una qualsiasi superficie orlata da γ e la normale a Sγ è orientata in maniera congruente all’orientazione di γ.

F.e.m derivante dall’induzione elettromagnetica Flusso concatenato con una linea chiusa orientata γ Congruenza del verso della normale alla superficie S rispetto a quello della linea γ

F.e.m derivante dall’induzione elettromagnetica Legge di Faraday Per effetto della variabilità nel tempo dell’induzione magnetica, nella linea chiusa orientata γ insorge una f.e.m. data da: in cui vale il segno – se il flusso concatenato con γ è calcolato con la stessa orientazione di γ con cui è definita la f.e.m e.

Definizione di bipolo Si definisce bipolo un oggetto elettrico racchiuso da una superficie S, da cui fuoriescano due morsetti A e B; S sia scelta in maniera tale che: 1) iA=iB; 2) sia conservativo su S e nelle sue immediate vicinanze; 3) vi sia assenza di forze di natura non elettrica. Il regime di funzionam. è stazionario o lentamente variabile

Esempi di bipoli A B Pila ideale

Esempi di bipoli: la capacità v B

Convenzioni dei segni in un bipolo

Potenza assorbita da un conduttore Convenz. utilizzatore Il lavoro dL secondo la direzione della forza per spostare la carica positiva dq da A a B (lavoro assorbito) è: La potenza corrispond. è pass=vi: tale espressione è esatta in regime staz. ed approssim. in regime lentamente variab.

Passorbita=vi Perogata=-vi Tale potenza è erogata dal resto della rete a monte del conduttore e trasferita a questo che la assorbe. Se si considera il lavoro elementare dL da B ad A,si ha: dL=-vidt e p=-vi questa potenza,derivante da un lavoro secondo una direzione opposta alla forza, si dice erogata dal conduttore. Se si considera un qualsiasi bipolo e si adopera la convenzione dell’utilizzatore si può dimostrare che continuano a valere le precedenti relazioni: Passorbita=vi Perogata=-vi Se v·i>0 si può dimostrare che una potenza positiva entra nella superficie limite del bipolo utilizzatore.

Potenza erogata o assorbita da un bipolo (convenzione del generatore) Perogata=-vi=vi’ Passorbita=vi=-vi’

Potenza assorbita o erogata da un bipolo Convenzione dell’utilizzatore p assorbita =vi p erogata =-vi Convenzione del generatore p erogata =vi p assorbita =-vi

Misura della potenza La misura della potenza assorbita (o erogata) da un bipolo si fa con il wattmetro, che presenta 2 coppie di morsetti: una coppia amperometrica attraversata da i ed una voltmetrica, cui è applicata v. Ciascuna coppia ha un morsetto +.

I principio di Kirchhoff (Legge di Kirchhoff delle correnti -LKC) Per la definizione di bipolo: In generale: m numero lati confluenti nel nodo

II principio di Kirchhoff (Legge di Kirchhoff delle tensioni -LKT) Per la definizione di bipolo: In generale: m è il numero di lati della maglia

Reti in regime stazionario Analisi delle reti

Caratteristica statica di un bipolo Si dice caratteristica statica di un bipolo la relazione: V=f(I)) che lega la tensione V applicata ai morsetti A e B alla corrente I che lo attraversa in regime stazionario. Due bipoli si dicono equivalenti se hanno la stessa caratteristica

Dipendenza della caratteristica dalle convenz. dei segni di V ed I

Dipendenza della caratteristica dalle convenz. dei segni di V ed I

Classificazione dei bipoli: bipoli lineari e non lineari Si dice lineare un bipolo la cui caratteristica è lineare. Si dice non lineare nel caso contrario

Classificazione dei bipoli:bipoli inerti e bipoli non inerti Si dice inerte un bipolo la cui caratteristica la caratteristica passa per l’origine degli assi. Si dice non inerte nel caso contrario

Classificazione dei bipoli: bipoli passivi Si dice passivo un bipolo per il quale la potenza assorbita è maggiore o eguale a zero. Esso funziona sempre da utilizzatore. V·I≥0

Classificazione dei bipoli: bipoli attivi Si dice attivo un bipolo non passivo. In alcune regioni del piano V,I esso funziona da generatore in altre da utilizzatore. V·I>0 V·I≤O V·I≥0 Convenzione utilizzatore

Una rete elementare

Bipoli lineari ideali

Bipolo Resistenza G

Potenza assorbita dal bipolo Resistenza Convenzione utilizzatore Pass=V∙I=(R∙I)∙I=R∙I2; Pass= V2/R=G V2. Convenzione generatore Pass=-V∙I=-(-R∙I)∙I=R∙I2; Pass= V2/R=G V2.

Una diversa caratterizzazione del bipolo resistenza Vn, Pn 10 V, 20 W 500 V, 50 kW

Equivalenza di bipoli Due bipoli si dicono equivalenti se hanno la stessa caratteristica statica

Corrente nei conduttori metallici e=-1.6·10-19 coulomb V=RI

Resistenza reale di un conduttore La resistenza di un conduttore cilindrico di sezione S e lunghezza l è dato da: dove ρ è la resistività variabile con la temperatura T: ρ= ρ0(1+αT) ρ0 resistività a 0 0C

Generatore ideale di tensione V=E

Generatore ideale di corrente I=J

Corto circuito ideale V=0 Può essere derivato dal bipolo resistenza ponendo R=0 o dal bipolo generatore ideale di tensione ponendo E=0

Aperto ideale I=0 Può essere derivato dal bipolo resistenza ponendo G=0 o dal bipolo generatore ideale di corrente ponendo J=0

Serie e parallelo di bipoli

Resistenze in serie

Resistenze in parallelo Se n=2 Se

Generatori ideali di tensione in serie e in parallelo E=E1=E2 I=I1+I2

Equivalenza di bipoli

Equivalenza di bipoli

Equivalenza di bipoli V=E I=J

Bipolo di Thévenin LKT Caratteristica statica

Bipolo di Norton LKC Caratteristica statica

Equivalenza del bipolo di Norton al bipolo di Thévenin Il bipolo di Norton è equivalente al bipolo di Thévenin se:

Generatore reale di tensione Pila reale sotto carico Circuito equivalente B A

Generatore reale di tensione P B O

Potenza utile erogata dal generatore reale di tensione Il massimo di Pu al variare di Ru si ha se:

Bilancio delle potenze e rendimento LKT

Caduta di tensione nel generatore reale di tensione

Parallelo di generatori reali di tensione Ic=0 se E1=E2

Una particolarizzazione della LKT LKT per una generica maglia a m lati Generico lato k-esimo

Un esempio

Formule del partitore di tensione Ripartizione della tensione V applicata a 2 resistenze in serie

Formule del partitore di corrente Ripartizione della corrente I tra due resistenze in parallelo

Trasformazioni triangolo-stella e stella-triangolo

Equivalenza di tripoli di resistenze

Condizioni di equivalenza tra tripoli di resistenze

Condizioni di equivalenza tra tripoli di resistenze

Condizioni di equivalenza tra tripoli di resistenze

Equazioni delle trasformazioni triangolo-stella e stella-triangolo Eliminando J dalle equazioni precedenti si ottiene il sistema:

Equazioni delle trasformazioni triangolo-stella e stella-triangolo Trasformazione triangolo-stella Trasformazione stella-triangolo

Un caso particolare

Analisi di una rete elettrica LKT per le maglie 1, 2, 3 1) 2) 3) LKC per il nodo A (o B)

Analisi di una rete elettrica, grafo, albero e coalbero Data una generica rete elettrica di bipoli lineari costituita da l lati e n nodi: Si dice grafo l’insieme costituito da tutti i lati e nodi della rete. Si dice albero il sottoinsieme del grafo costituito da tutti i nodi e da n-1 lati che congiungono tali nodi senza formare maglie chiuse. Il coalbero è l’insieme complementare dell’albero. Esso è costituito da l- (n-1) lati

Esempi di grafi, alberi e coalberi n=2

Esempi di grafi, alberi e coalberi n=6

Analisi di reti resistive con sorgenti di tensione Data la generica rete, con l lati ed n nodi: il calcolo delle correnti si effettua risolvendo il sistema di l eq. lineari nelle l incognite Ik costituito da: l-(n-1) LKT n-1 LKC

Un esempio numerico E1=30 V E2=60 V Sistema risolvente Forma matriciale Risultato I1=0 I2=1,5 A I3=1,5 A

Le potenze in gioco Potenza erogata da E1: Pe1=E1 I1=0 W Potenze assorbite dalle resistenze: PR1=R1I12 =0 W PR2=R2I22 =45 W PR3=R2I32 =45 W Prtot=90 W Pe1 + Pe2 =Prtot

Una rete con sorgenti di tensione e di corrente E1=30 V J=2 A I1=-0,25 A I2=1,75 A

Le potenze in gioco Potenza erogata da E1: Pe1=E1 I1=-7,5 W Potenza erogata da J: PeJ=VJJ=150 W Potenze assorbite dalle resistenze: PR1=R1I12=1,25 W PR2=R2I22=61,25 W PR3=R2I32=80 W Prtot=142,5 W VJ=75 V Pe1 + PeJ = Prtot

Analisi di reti con sorgenti di tensione e di corrente Data la generica rete, con sorgenti di tensione e di corrente, con n nodi ed l lati (l è definito non considerando i lati contenenti i generatori di corrente in cui la corrente è nota), il calcolo delle l correnti incognite Ik si effettua risolvendo il sistema di l eq. lineari, linearmente indipendenti costituito da: l-(n-1) LKT n-1 LKC

Principio di conservazione delle potenze elettriche Ipotesi: La stessa convenzione dei segni su tutti gli l lati della rete. Siano P1,.. Pi,…Pn gli n nodi della rete Tesi Somma parziale relativa al nodo Pi Generico bipolo costituente il k-esimo lato della rete

Una formulaz. del principio di conservazione nelle reti lineari La somma delle potenze erogate dai generatori di tensione e di corrente è eguale alla somma delle potenze assorbite dalle resistenze

Un corollario dei principi di Kirchhoff Ipotesi Nel generico nodo P’ confluiscono solo bipoli passivi Tesi Tra i nodi contigui esiste almeno un nodo P” a potenziale U≥U(P’) e almeno uno a potenziale U≤U(P’). Da questo corollario scaturisce il principio di non amplificazione delle tensioni. Se I1, I2>0 si ha V1,V2≥0 e U(P”1)≤U(P’) e U(P”2)≤U(P’) Se I3, I4<0 si ha V3,V4 ≤ 0 e U(P”3) ≥ U(P’) e U(P”4) ≥ U(P’)

Principio di non amplificazione delle tensioni Tale principio prevede che ai capi dell’unico lato attivo di una rete in regime stazionario, in cui vi siano tutti lati passivi tranne uno, è applicata la tensione massima. Si consideri infatti l’insieme di n elementi costituito dai potenziali degli n nodi della rete. Per il precedente corollario il potenziale dei nodi in cui confluiscono solo lati passivi non può essere né il massimo né il minimo di tale insieme. Conseguentemente i potenziali massimo e minimo devono essere relativi ai nodi posti agli estremi dell’unico lato attivo. Si può dimostrare che in tale lato si ha anche la massima corrente (Principio di non amplificazione delle correnti)

Sovrapposizione degli effetti

Sovrapposizione degli effetti, un esempio numerico E1=30 V J=2 A I1=I’1+I”1=-0,25 A I2=I’2+I”2=1,75 A I3=I’3+I”3=2 A

Sovrapposizione degli effetti, un esempio numerico E1=30 V E2=60 V Req=R1+R2//R3=30 Ω I’1= 1 A

Sovrapposizione degli effetti, un esempio numerico Req=R2+R1//R3=30 Ω I1=I’1+I”1=0 I3=I’3+I”3=1,5 A I2=I’2+I”2=1,5 A

Non applicabilità della sovrapposizione degli effetti al calcolo delle potenze Posto: la potenza Pk assorbita dalla resistenza Rk non è pari alla somma di P’k e P”k; infatti:

Analisi di reti con sorgenti di tensione e di corrente Data la generica rete con n nodi ed l lati il calcolo delle l correnti incognite Ik si effettua risolvendo il sistema di l eq. lineari, linearmente indipendenti costituito da: l-(n-1) LKT n-1 LKC

Metodo dei potenziali nodali Sostituendo le correnti nelle n-1 LKC: si ha il sistema di n-1 eq. nelle n incognite Upk: Se poniamo eguale a zero il potenziale di uno degli n nodi, si ottiene:

Metodo dei potenziali nodali, la formula di Millmann La LKC fornisce dove:

Formula di Millmann: un esempio numerico E1=30 V E2=60 V G1=G2=G3=G=0,05 Ω-1 I1=(E1-UA)G1=0 I2=(E2-UA)G2=1,5 A I3=(-UA)G3=-1,5 A

Teorema di Thévenin: enunciato Se s’isola un lato AB di una rete lineare, il bipolo a monte dei morsetti A,B è equivalente ad un bipolo di Thévenin, in cui V0 è la tensione a vuoto tra A e B e Req è la resistenza equivalente dello stesso bipolo reso passivo.

Teorema di Thévenin: dimostrazione

Teorema di Thévenin: dimostrazione

Teorema di Thévenin: una conseguenza

Un esempio numerico E1=30 V E2=60 V V Req=R1//R2=10 Ω

Teorema di Norton: enunciato Se s’isola un lato AB di una rete lineare, il bipolo a monte dei morsetti A,B è equivalente ad un bipolo di Norton, in cui Icc è la corrente di corto circuito tra A e B e Req è la resistenza equivalente dello stesso bipolo reso passivo.

Teorema di Norton: dimostrazione Caratteristica comune ai bipoli di Thévenin e Norton

Teorema di Norton: una conseguenza

Un esempio numerico E1=30 V E2=60 V Icc=E1/R1+E2/R2=4,5 A Req=R1//R2=10 Ω