LE EQUAZIONI DI SECONDO GRADO

Slides:



Advertisements
Presentazioni simili
LE EQUAZIONI DI 2° GRADO Prof. Franco Bonerba.
Advertisements

Cosa sono? Come si risolvono?
Bisogna risolvere l’equazione
Calcolo letterale I POLINOMI
"Il Problema non è un...PROBLEMA"
I SISTEMI LINEARI.
EQUAZIONI Una equazione è una uguaglianza tra due espressioni algebriche eventualmente verificata per particolari valori attribuiti alla variabile detta.
x+x=2x Consideriamo la seguente frase:
Equazioni di primo grado
Equazioni di primo grado
EQUAZIONI DI 2° GRADO.
CONTENUTI della I° parte
MATEMATICA PER L’ECONOMIA
EQUAZIONI Prendiamo in considerazione delle funzioni reali in una variabile reale Una equazione è una uguaglianza tra due funzioni eventualmente verificata.
Identità È un’uguaglianza valida per qualsiasi valore attribuito alla x 2x + x = 3x se x =5 2*5 +5 =3* = 15 se x=8 2*8 + 8 =3*8 16.
= 2x – 3 x Definizione e caratteristiche
(se a = 0 l’equazione bx + c = 0 è di primo grado)
Esempio : 2x+5=11-x è un’uguaglianza vera se x è uguale a 2.
Elementi di Matematica
EQUAZIONI.
Fase 1 e 2 Lezione 1 Lezione 2 Lezione 3 Lezione 4.
EQUAZIONI DI PRIMO GRADO AD UNA INCOGNITA
Liceo Scientifico "A.Volta" Reggio Calabria
La forma normale di un’equazione di secondo grado è la seguente:
Le equazioni lineari Maria Paola Marino.
ITCG Mosè Bianchi-Monza
Disequazioni Disequazioni di 1° grado Esempio Esempio con x negativo
SSIS-Veneto Indirizzo FIM A.A
EQUAZIONI DI SECONDO GRADO
Equazioni di 2° grado.
TEORIA EQUAZIONI.
Equazioni di secondo grado
Parabola Parabola.
Lezione multimediale a cura della prof.ssa Maria Sinagra
EQUAZIONI DI SECONDO GRADO
Prof. Antonio Scarvaglieri - A.S. 2005/06 RISOLUZIONE DI UNEQUAZIONE DI 1° GRADO Quando lequazione è di 1° grado (detta anche lineare), la sua risoluzione.
EQUAZIONI DI SECONDO GRADO
Di Crosara Andrea. Ci proponiamo di trovare una strategia risolutiva per lequazione di secondo grado completa dove a, b, c, sono tutti diversi da 0. Utilizziamo.
DISEQUAZIONI Disequazioni di primo e secondo grado.
La scomposizione di un polinomio in fattori
SOLUZIONE GRAFICA DI DISEQUAZIONI DI SECONDO GRADO
Regola di Cartesio Consideriamo l’equazione di secondo grado
EQUAZIONI DI PRIMO GRADO
DISEQUAZIONI 2° GRADO Classe: 2° liceo classico
…sulle equazioni.
Equazioni di primo grado
CALCOLO LETTERALE I PRODOTTI NOTEVOLI
LE EQUAZIONI DI PRIMO GRADO
Equazioni e disequazioni
LE EQUAZIONI DI PRIMO GRADO
Equazioni.
Equazioni e disequazioni
APPUNTI ALLE LEZIONI DI MATEMATICA DEL SECONDO ANNO ITER
a cura dei prof. Roberto Orsaria e Monica Secco
EQUAZIONI di primo grado numeriche intere con una incognita.
Disequazioni di secondo grado
A A cura di Siega Vanessa. Qualsiasi equazione che, dopo aver eseguito le opportune trasformazioni, si presenta nella forma: ax 2 +bx+c=0 Viene chiamata:
Equazioni di 1° grado.
EQUAZIONI DI SECONDO GRADO
X = 0. Leggi attentamente le diapositive che seguono e poi prova a risolvere gli esercizi che trovi sull’ultima diapositiva. RICORDA CHE: risolvere.
DISEQUAZIONI DI II GRADO. Lo studio del segno di un trinomio Considerando che il coefficiente a sia sempre positivo cioè a>0 per risolvere le disequazioni.
Forma normale delle equazioni di 2° grado Definizione. Un'equazione di secondo grado è in forma normale se si presenta nella forma Dove sono numeri.
Equazioni Che cosa sono e come si risolvono. Osserva le seguenti uguaglianze: Equazioni Che cosa sono Queste uguaglianze sono «indeterminate», ovvero.
Equazioni algebriche sul campo dei numeri reali. Generalità.
INTRODUZIONE Il progetto è rivolto ad alunni che frequentano il biennio del Liceo Scientifico, gli argomenti affrontati sono di notevole importanza per.
Raccogliamo x al primo membro e 2 al secondo:
Disequazioni di secondo grado Teoria ed applicazioni Classe2ai Prof. Govoni.
Concetto di funzione Funzione y = ax² + bx + c Equazione ax² + bx + c = 0 Disequazioni 2° grado Chiudi.
Unità didattica progettata e realizzata dalle docenti: Rita Montella, Gelsomina Carbone classi II e II A Anno Scolastico 2007/2008 Ha collaborato alla.
Classe II a.s. 2010/2011 Prof.ssa Rita Schettino
Transcript della presentazione:

LE EQUAZIONI DI SECONDO GRADO ISTITUTO PROFESSIONALE DI STATO PER I SERVIZI COMMERCIALI TURISTICO E ALBERGHIERI E DELLA RISTORAZIONE “B. STRINGHER”- UDINE LE EQUAZIONI DI SECONDO GRADO a cura dei prof. Roberto Orsaria e Monica Secco

Cosa è un’equazione di secondo grado? Un’equazione di secondo grado è un’equazione in cui l’incognita (usualmente indicata con la lettera x) compare con esponente al massimo pari a 2. Ad esempio sono equazioni di secondo grado: x2-3x=4 4x2-1=0 3x2-2x+4=0

Cosa significa risolvere un’equazione? Significa trovare gli eventuali valori numerici che assegnati all’incognita rendono l’equazione un’uguaglianza sempre vera. Questi valori vengono dette soluzioni o radici dell’equazione.

Quante sono le soluzioni di un’equazione di secondo grado? Un’equazione di secondo grado può avere: 1) due soluzioni reali distinte determinata 2) due soluzioni reali coincidenti 3) nessuna soluzione impossibile 4) infinite soluzioni indeterminata Nei casi 1) e 2) l’equazione si dice determinata, mentre nel caso 3) si dice impossibile e nel caso 4) si dice indeterminata

Cosa si intende per forma normale dell’equazione di secondo grado? Data un’equazione di secondo grado, essa può essere sempre ricondotta, effettuando opportuni passaggi algebrici, alla forma: ax2+bx+c=0 questa è detta “forma normale”. Ad esempio nell’ equazione 4x2=+5x-12, trasportando tutti i termini al primo membro (ricordandosi di cambiarne il segno) otteniamo l’equazione in forma normale: 4x2-5x+12=0

Classificazione delle equazioni di secondo grado In base alla loro forma le equazioni di secondo grado vengono così classificate: equazioni pure: ax2+c=0 equazioni spurie: ax2+bx=0 equazioni complete: ax2+bx+c=0 Le equazioni pure e spurie sono dette anche incomplete

Come si risolve un’equazione pura? Considera l’equazione pura: ax2+c=0 isola il termine con x2: ax2= -c dividi per a: x2= -c/a a questo punto si possono verificare due casi:

10 caso: il termine –c/a è positivo: si può allora estrarre la radice quadrata e si ottengono due soluzioni distinte (una positiva e l’altra negativa) x1,2= ±-c/a 20 caso: il termine –c/a è negativo: in questo caso non si può estrarre la radice quadrata e l’equazione non ha soluzioni reali (è impossibile).

Ad esempio considera l’equazione: 4x2-16=0 isola il termine x2: 4x2 = 16 dividi tutto per 4 e ottieni: x2 = 4 e quindi estrai la radice quadrata di +4 (ricordati che ci sono due soluzioni di segno opposto) x1,2= ± 2

Considera ora l’equazione pura seguente: 2x2+50=0 isola il termine x2 e ottieni: 2x2 = -50 dividi tutto per 2: x2 = -25 osserva ora che al secondo membro dell’equazione hai un numero negativo, per cui non è possibile estrarre la radice quadrata e quindi l’equazione è priva di soluzioni reali, cioè impossibile.

Come si risolve un’equazione spuria? Consideriamo l’equazione spuria ax2+bx=0 raccogli a fattor comune la x: x(ax+b)=0 applica la legge di annullamento del prodotto (il prodotto di due fattori è nullo se e solo se almeno uno dei due fattori è nullo) e otteni che deve essere: 10 fattore uguale a zero x=0 20 fattore uguale a zero: ax+b=0, da cui x= -b/a

quindi un’equazione spuria ha sempre due soluzioni distinte, di cui una vale sempre zero. Esempio se devi risolvere l’equazione spuria: 3x2+5x=0 devi raccogliere a fattor comune la x: x(3x+5)=0 e così ottieni le due soluzioni: x1=0 e x2= -5/3

Come si risolve un’equazione completa? Per risolvere un’equazione completa ax2+bx+c=0 devi applicare la formula risolutiva seguente: x1,2 = (-b±b2-4ac)/2a Il termine che compare sotto radice viene chiamato discriminante e indicato usualmente con la lettera greca  (delta).

Quale è il ruolo del discriminante? Il discriminante gioca un ruolo molto importante ai fini della determinazioni delle soluzioni dell’equazione. A seconda del suo segno si possono verificare tre casi: 1o caso: >0 in questo caso sotto il simbolo di radice si ha un numero positivo, per cui è possibile estrarre la radice quadrata e si ottengono due soluzioni reali distinte x1,2 = (-b±b2-4ac)/2a

2o caso: =0 se il discriminante è nullo, la radice quadrata è pure nulla e quindi si ottengono due soluzioni reali coincidenti: x1 = x2 = -b/2a 3o caso: <0 se il discriminante è negativo, sotto radice abbiamo un numero negativo e quindi non è possibile estrarre la radice quadrata, per cui l’equazione non ha soluzioni reali (è impossibile)

Esempi 1) Considera l’equazione completa x2+3x+2=0 risulta: a=1 b=3 c=2 calcola il discriminante b2-4ac: = 32-4·1· 2= 9-8=1 esso è positivo per cui l’equazione ammette due soluzioni reali distinte: calcola la radice quadrata del discriminante:  = 1 ottieni allora le due soluzioni: x1= (-3+1)/2= -1 e x2= (-3-1)/2=-2

2) Considera l’equazione completa: x2-10x+25=0 risulta: a=1 b=-10 c=+25 calcola il discriminante: = (-10)2-4· 1· 25= 100-100=0 esso è nullo e quindi l’equazione ammette due soluzioni reali coincidenti: x1=x2= 10/2=5

3) Considera l’equazione completa x2-7x+13=0 risulta: a=+1 b=-7 c=+13 calcola il discriminante: = (-7)2-4· 1· 13= 49 – 52 = -3 <0 il discriminante è negativo e quindi l’equazione non ammette soluzioni reali, cioè è impossibile.