(torniamo a) Acidi poliprotici

Slides:



Advertisements
Presentazioni simili
Acidi e basi pH Soluzione tampone.
Advertisements

Le reazioni chimiche.
Reazioni dirette e inverse
Reazioni Redox Farmacia 2012.
ACIDI E BASI.
Stati di aggregazione della materia
L’energia libera di Gibbs
Soluzioni tampone.
Acidi e basi Titolazione acido-base pH di acidi forti
L’ Equilibrio chimico aA +bB cC + dD
Autoprotolisi di H2O Kw = [ H3O+ ] [OH- ]= H2O H+ + OH- [ H+ ]
Modifiche del pH Definizione pH: Aggiunta all’acqua di:
Equilibri chimici Classi quarte/quinte Liceo Scientifico Tecnologico.
Acidi e basi definizione di Arrhenius
TERMODINAMICA.
TERMODINAMICA.
EQUILIBRIO CHIMICO.
Reazioni in soluzione acquosa.
16. La Termodinamica Il Primo Principio della Termodinamica
AnalisiQualitativa_Orioli(cap2)1 VELOCITA DI REAZIONE ED EQUILIBRI.
le loro soluzioni ACIDE o BASICHE
Calcolare il pH di una soluzione di:
Calcolare il pH di una soluzione di:
ACIDI E BASI.
ENTROPIA, ENERGIA LIBERA ED EQUILIBRIO
Acidi e basi.
Le reazioni spontanee Spesso si associa il concetto di reazione spontanea ad una reazione che produce calore: certamente una reazione di combustione avviene.
Questo materiale è inteso UNICAMENTE per lo studio PERSONALE
Forza degli ossiacidi XOm(OH)n m = 2, 3 acido forte
la soluzione finale contiene solo acetato di sodio
a) il pH al punto equivalente,
I sali in soluzione sono completamente dissociati
Gli acidi e le basi.
Termodinamica.
Equilibrio chimico in fase gassosa
(La Ka dell’acido cianidrico HCN è 1,10 x 10-9)
Questo materiale è inteso UNICAMENTE per lo studio PERSONALE
Ambiente: il resto dell’universo che non fa parte del sistema
Gli acidi e le basi.
Equilibri acido-base (prima parte).
Equilibrio in fase liquida
Stati di aggregazione della materia
Il principio di Le Chatelier-Braun
Curva di distribuzione delle specie
Variazioni di pH Definizione pH: Aggiunta all’acqua di:
LE REAZIONI CHIMICHE I2 + Sb SbI3
SOLUZIONI CONTENENTI UNA BASE FORTE
Sistema e ambiente Si definiscono “sistemi chimici” le sostanze (reagenti e prodotti) che partecipano alle trasformazioni fisiche e chimiche della materia.
Transizioni di stato.
Transizioni di stato.
EI, AE e Elettronegatività: polarità dei legami legame covalente omopolare ed eteropolare dipolo e momento dipolare μ = Qr polarità di legame e polarità.
Le definizioni di acido e di base
I gas.
Autoprotolisi di H2O Kw = [ H3O+ ] [OH- ]= H2O H+ + OH- [ H+ ]
Autoprotolisi di H 2 O H 2 O H + + OH - K eq = [ H + ] [OH - ] [ H 2 O ] K w =[ H 3 O + ] [OH - ]= = 1,8x [ H 2 O ]=55 M.
Acidi e basi pH di acidi forti pH di acidi deboli
Stati di aggregazione della materia
Termodinamica U H S G Energia interna Entalpia Entropia
Stati di aggregazione della materia
Gli acidi e le basi.
Per una generica reazione: le concentrazioni di A e B diminuiscono prima più velocemente e poi più lentamente fino a raggiungere un valore costante. Contemporaneamente.
P ERCHÉ DUE SOSTANZE REAGISCONO FRA DI LORO ? “Perchè hanno affinità chimica fra loro..” Ma come faccio a dirlo? Come stabilisco i prodotti? Occorre una.
ACIDI E BASI ARRHENIUS (1884) ACIDO: sostanza che (in H 2 O) aumenta la concentrazione di H + BASE: sostanza che (in H 2 O) aumenta la concentrazione di.
Teorie acido-base pag. (399)
TERMODINAMICA ed EQUILIBRIO CHIMICO.
EQUILIBRIO CHIMICO Equilibrio = condizione in cui tendenze opposte si bilanciano Equilibrio statico Equilibrio dinamico.
Transcript della presentazione:

(torniamo a) Acidi poliprotici Cosa succede se anche la prima dissociazione non è forte (Ka1<1) Es H3PO4 CO2 SO2

Equilibri simultanei In generale, quando la distribuzione delle specie in soluzione è determinata da piu’ di un equilibrio, La concentrazione di ciascuna specie in soluzione rappresenta una variabile, mentre ciascun equilibrio in soluzione rappresenta una equazione.

Acidi e basi pH di acidi forti pH di acidi deboli Grado di dissociazione KaKb=Kw pH di soluzioni saline Titolazione acido-base Acidi e basi poliprotici Equilibri simultanei Soluzioni tampone

Equilibri simultanei Nel caso di un sistema dove c’è un acido forte + un acido debole, il sistema è semplificato perché Acido forte è completamente dissociato e gli unici equilibri in soluzione rimangono quelli della Ka di Acido debole e di Kw Per farti una idea, calcola il grado di dissociazione di una soluzione 10-2 M di CH3COOH in presenza ed in assenza di HCl

Equilibri simultanei HCl + H2O H3O+ + Cl - Una soluzione di HCl in H2O Acido FORTE (Ka1>1) + una soluzione di CH3COOH Acido DEBOLE (Ka= 2x10-5) HCl + H2O H3O+ + Cl - Ka1>1 Questo equilibrio è completamente spostato a dx [H+]=C0HCl Ka= 2x10-5 CH3COOH + H2O H3O+ + CH3COO - [ H3O+ ] [CH3COO- ] (C0HCl +x) x = Ka = (C0Hac -x) [CH3COOH ]

Equilibri simultanei NaOH + H2O Na+ + OH - Una soluzione di NaOH in H2O Base FORTE (Kb>1) + una soluzione di CH3COOH Acido DEBOLE (Ka= 2x10-5) Ka1>1 NaOH + H2O Na+ + OH - Questo equilibrio è completamente spostato a dx [OH-]=C0b Ka= 2x10-5 CH3COOH + H2O H3O+ + CH3COO - Questo equilibrio sarà spostato a sn o a dx dalla presenza di una base forte?

Domanda 2 H2O H3O+ + OH - Kw=[H+][OH-]= (C0A+x)(x)=10-14 Perché fino ad adesso, in presenza di un acido forte non abbiamo mai considerato gli H+ che derivano dalla dissociazione di H2O? 2 H2O H3O+ + OH - Perché la presenza di un altro acido sposta completamente a sinistra l’equilibrio di autoprotolisi. Pertanto il contributo degli H+ che derivano dalla autoprotolisi è trascurabile Kw=[H+][OH-]= (C0A+x)(x)=10-14

Acido diluito in acqua Qualora un acido debole sia presente in concentrazioni molto diluite la concentrazione degli H+ che derivano dalla dissociazione di H2O deve comunque essere considerata. Es: calcolare il pH di una soluzione 10-7 M di HClO4

Esempi Acidi forti HCl, HNO3 Acidi deboli CH3COOH, HCN, NH4+ Basi forti NaOH, KOH Basi deboli NH3, CH3COO -, CN- Sali di Acidi e basi forti NaCl, KNO3 Sali di Acidi deboli e basi forti CH3COONa, KCN, Sali di basi deboli e acidi forti NH4Cl

Reazioni acido-base Base 1 + Acido 2 Acido 1 + Base 2 CH3COOH +NH3 CH3COO- + NH4 + Kb = [ OH- ] [NH4+] [NH3] Ka = [ CH3COO- ] [H3O+] [ CH3COOH ]

Reazioni acido-base Base 1 + Acido 2 Acido 1 + Base 2 CH3COOH +NH3 CH3COO- + NH4 + [ CH3COO- ] [NH4+] [ OH- ] [H3O+] Keq = [ CH3COOH ] [NH3]

Reazioni acido-base Base 1 + Acido 2 Acido 1 + Base 2 CH3COOH +NH3 CH3COO- + NH4 + [ CH3COO- ] [NH4+] [ OH- ] [H3O+] Keq = [ CH3COOH ] [NH3]

Reazioni acido-base Base 1 + Acido 2 Acido 1 + Base 2 CH3COOH +NH3 CH3COO- + NH4 + [ CH3COO- ] [NH4+] [H3O+] [ OH- ] Keq = [H3O+] [ OH- ] [ CH3COOH ] [NH3]

Reazioni acido-base Base 1 + Acido 2 Acido 1 + Base 2 CH3COOH +NH3 CH3COO- + NH4 + [ CH3COO- ] [NH4+] [H3O+] [ OH- ] Keq = =Ka1*Kb2 [H3O+] [ OH- ] [ CH3COOH ] [NH3] Kw =Ka1/Ka2

Reazioni acido-base

(alcuni) Argomenti Acidi e basi coniugate Acidi deboli Grado di dissociazione Reazioni acido-base Acidi senza H+

Acidi e basi di Lewis Acidi di Lewis= specie che possono accettare in compartecipazione una coppia di elettroni da un’altra specie. Base di Lewis = specie che può cedere in compartecipazione una coppia di elettroni ad un’altra sostanza. H H F F F B N H + N H F B F H F H

Stati di aggregazione della materia

Transizioni di stato

Diagramma di stato di H2O

Termodinamica U H S G Energia interna Entalpia Entropia Energia libera di Gibbs

Funzioni di stato Grandezza fisica o proprietà di un sistema che dipende solamente dallo stato iniziale e finale, non dal particolare cammino seguito per arrivarvi. Una funzione di stato descrive lo stato di equilibrio di un sistema. Esempio..

DU= Ufinale - Uiniziale Energia in chimica Ciò che ci interessa non è il valore assoluto di Energia interna ma la differenza tra la energia dello stato iniziale e quella della stato finale di una reazione DU= Ufinale - Uiniziale

Termodinamica DU DH DS DG Energia interna Entalpia Entropia Energia libera di Gibbs

Energia in chimica U= Energia interna E’ la somma di tutti i contributi alla energia del sistema. U=Ecin+Epot dove la Ecin dipende dalla velocità delle molecole mentre la Epot è , esempio, data dalle forse di attrazione coulombiana tra le particelle più la somma di tutte le forze di legame Un sistema tende sempre al minimo di Energia Interna. Per questo avvengono le transizioni di stato.

Esempi ? DU= Ufinale - Uiniziale <0 CaSO4 Ca2+ + SO42- DU= UCa2+ + USO42- - UCaSO4 ? <0 Il processo di solubilizzazione del sale porta ad un sistema ad energia piu’ bassa, ovvero ad un sistema PIU’ STABILE. Il sistema è piu’ stabile in soluzione perché gli ioni Ca2+ ed SO42- sono solvatati, ovvero si legano a molecole di H2O. L’energia interna diminuisce. Dove va? Si trasforma in calore

Esempi CaSO4 Ca2+ + SO42- +Q REAZIONI ESO TERMICHE La reazione porta allo sviluppo di CALORE. Reazioni che sono associate alla cessione di calore si definiscono REAZIONI ESO TERMICHE Quelle dove invece la reazione assorbe calore sono definite REAZIONI ENDOTERMICHE

Termodinamica DU Energia interna Corrisponde al Calore scambiato in una reazione a Volume costante

Ricordi di fisica: Primo principio della termodinamica U=Q-L Energia interna La variazione di energia interna ΔU di un qualsiasi sistema termodinamico corrisponde alla differenza delle quantità di calore Q e lavoro L forniti al sistema. Il Lavoro non si puo’ trascurare o ignorare…

Consideriamo un caso…. P=costante Per il primo principio della termodinamica, L’energia che si sviluppa in una reazione dipende non solo dal calore che si è sviluppato ma anche dal LAVORO prodotto. Pertanto si definisce una NUOVA FUNZIONE PER DESCRIVERE L’ENERGIA INTERNA DEL SISTEMA

DH= DU +PDV = Hfin-Hiniz Entalpia H= Entalpia H= U +PV Ovvero la somma di Energia Interna e di lavoro esterno PV è il lavoro che viene compiuto dal sistema. Per esempio quando c’è una variazione di volume o di pressione DH= DU +D(PV) a pressione costante DH= DU +PDV = Hfin-Hiniz

Entalpia e calore DU= Q -L L= PDV DH= DU +PDV DH- PDV = Q -PDV DH = Qp Primo principio termod. Il lavoro è dato dalla variazione di volume del sistema! A pressione costante L= PDV DH= DU +PDV Quindi.. DH- PDV = Q -PDV Calore sviluppato o ceduto da una reazione a pressione costante DH = Qp

Termodinamica DH Entalpia Corrisponde al calore scambiata in una reazione a pressione costante.

Processi endotermici e esotermici Esotermico: durante la trasformazione il sistema cede una certa energia sotto forma di calore. Endotermico: durante la trasformazione si ha assorbimento di calore. Hi Hf DH > 0 Hi DH < 0 Hf

Termodinamica=calore? Posso convertire completamente il calore il lavoro? NO Secondo principio della termodinamica

Deve esistere un’altra funzione di stato che “misura” la spontaneità di una reazione o di un evento

Entropia Quando si gettano dei dadi si ottiene sempre a. Questo perché la configurazione a è favorita da un punto di vista entropico

Entropia L’entropia, S, è una funzione di stato che misura il disordine del sistema: bassa entropia vuol dire poco disordine; alta entropia corrisponde a grande disordine. L’entropia di un sistema isolato aumenta nel corso di qualsiasi processo spontaneo. non spontaneo spontaneo

Termodinamica DS Entropia E’ una grandezza che descrive il disordine del sistema

L’entropia aumenta nell’ordine Solido<liquido<gas Nel liquido, a differenza del solido, le particelle hanno libertà di traslazione. Nello stato gassoso, hanno tutta la libertà di muoversi. L’entropia aumenta nell’ordine Solido<liquido<gas

Energia e disordine I processi endotermici e/o esotermici contribuiscono a variare l’energia del sistema (Entalpia) Anche la variazione del disordine del sistema contribuisce a variare l’energia del sistema (Entropia) Occorre definire un’altra grandezza in grado di “riassumerle” entrambe

L’energia libera di Gibbs G = H-TS DG = DH-TDS

L’energia libera di Gibbs DG = DH-TDS Un processo è spontaneo quando corrisponde ad una diminuzione di energia libera. DG < 0

L’energia libera di Gibbs P G spontanea 100% R 100% P

L’energia libera di Gibbs P

L’energia libera di Gibbs P In quale punto della reazione si stabilirà l’equilibrio della reazione?

L’energia libera di Gibbs P In quale punto della reazione si stabilirà l’equilibrio della reazione? La posizione corrispondente al valore MINIMO della funzione G

Processi spontanei Variazione di entalpia Variazione di entropia Spontaneo? DH < 0 Esotermico DS > 0 Aumento DG < 0 SI DS < 0 Diminuzione SI se |TDS| < | DH| DH > 0 Endotermico |TDS| > | DH| diminuzione DG > 0 NO

Energia libera e transizioni di Stato

Cambiamenti di stato e termodinamica Quando due fasi sono contemporaneamente presenti (es: acqua a T=373 K e P=1 Atm) significa che le due fasi hanno lo stesso valore della funzione G, ovvero il sistema ha la stessa stabilità in una fase e nell’altra. Quindi DG = Gvap – G liq,m =0 Tuttavia DG =DH –TDS Le variazioni di entalpia ed entropia NON sono zero, tutt’altro!

Trasformazione liquido-gas Un gas in equilibrio con la sua fase liquida esercita una pressione costante a T costante = pressione del vapore saturo o tensione di vapore P = n/V RT Se si diminuisce V, una certa quantità di gas condensa in modo che n/V sia costante. In un recipiente aperto, V = infinito, e la pressione non raggiunge mai quella del vapor saturo e si ha quindi evaporazione completa. evaporazione condensazione

Trasformazione liquido-gas Ogni molecola di liquido che passa a vapore determina un aumento della Entalpia, perché Hvap>Hliq DG=DH-TDS >0 Pero’ il disordine dello stato di vapore è maggiore di quello dello stato liquido quindi DS >0. Pero’ nella equazione di Gibbs il termine entropico ha il segno - davanti evaporazione condensazione DG=DH-TDS <0 Aumentando la Temperatura aumenta l’evaporazione, ovvero aumenta la pressione a cui il vapore è in equilibrio con il liquido Aumentare la Temperatura significa aumentare l’importanze del contributo entropico

L’entalpia nei cambiamenti di stato Si definisce una entalpia molare standard di vaporizzazione. Il processo sarà sempre endotermico perché io devo fornire calore per effettuare la transizione di stato DHvap = Hvap,m – H liq,m

L’entalpia nei cambiamenti di stato Lo stesso vale per le altre transizioni entalpia molare standard di fusione. DHfus = Hliquido,m – H solido,m entalpia molare standard di sublimazione DHsub = Hvapore,m – H solido,m