Le sezioni coniche di Apollonio e i luoghi geometrici di Descartes

Slides:



Advertisements
Presentazioni simili

Advertisements

LE CONICHE Con sezione conica si intende una curva piana che sia luogo dei punti ottenibili intersecando la superficie di un cono circolare retto con un.
Coordinate di un punto P(x,y,z)
Definizione e proprietà del parallelogramma
LICEO SCIENTIFICO G. ASELLI
L’ IPERBOLE.
DIDATTICA A DISTANZA “CARRELLATA” SULLE CONICHE CON ESERCITAZIONI
L’iperbole Teoria e laboratorio
Oggi le ... n ... comiche.
CIRCONFERENZA ELLISSE PARABOLA IPERBOLE Un po’ di storia
Prof. Valerio Muciaccia
Storia delle coniche a cura di: Caruso Angela.
Presentazione fatta da Bonazza & Peli
LE CONICHE L’ ellisse.
I QUADRILATERI “Per geometria non intendo lo studio artificioso di
1 ESEMPIO F ~ F’’ Definizione
Definizione e caratteristiche
Elementi di Matematica
Elementi di Matematica
Liceo scientifico “G.Aselli” classe III E anno scolastico
LA PARABOLA PREREQUISITI DISTANZA TRA DUE PUNTI
LA PARABOLA.
come sezioni di cono circolare
Geometria euclidea, affine e proiettiva
"La geometria" di Cartesio
LE CONICHE                                       .
Le coniche Storia e applicazioni Di Anna Brambilla 3°E.
LE CONICHE.
Il teorema di Pitagora.
Parabola Dato un punto F del piano F d ed una retta d
geometrici di descartes
Le Coniche dalle origini ai giorni nostri
Curve & Coniche Francesca Serato 3^ ASo.
A cura della 3 G e della prof.ssa Rosa Zollo Anno scolastico 2010/2011 a.
??? ??? ??? La parabola Prova ??? ??? ???.
Fabrizio Gay – corso di fondamenti e applicazioni di geometria descrittiva aa CURVE e SUPERFICIE 1: Modelli matematico e categorie comuni (morfologia.
… LE CONICHE ….
CONICHE 1. coniche come “luoghi solidi” 1.1 le coniche di Menecmo
Lo studio delle coniche nel tempo
F. Gay, Università IUAV di Venezia, Corso di Laurea in Scienze dellArchitettura - Modulo coordinato di rappresentazione 1 – aa Curve e superficie.
Curve e superficie prima parte: coniche nel piano e nello spazio
LA PARABOLA.
LE CONICHE di LUCCISANO GABRIELE E FERRARO LUCIANO
LA CIRCONFERENZA.
CONICHE 1. coniche come “luoghi solidi”
Classi terze programmazione didattica Col terzo anni si abbandona l’ algebra, che rimane un prerequisito fondamentale, e si introduce, in modo più strutturato,
Geometria Analitica.
LE MACRO.
Sezioni coniche.
Classi terze programmazione didattica
Sezioni coniche Schemi riassuntivi, definizioni e cenni storici
Equazione di un luogo geometrico nel piano cartesiano
Cap. 6 Sezioni, intersezioni e sviluppi di solidi elementari
Trasformazioni geometriche
Proff. Cornacchia - De Fino
La Géométrie di Descartes Le rappresentazioni geometriche delle soluzioni delle equazioni Paolo Freguglia Dept. of Engineering and Science of Information.
Le Coniche.
La circonferenza e l’ellisse La sezione conica è l’intersezione di un piano con un cono. La sezione cambia a seconda dell’inclinazione del piano. Se il.
L’iperbole l'iperbole1IISS "Medi" - Galatone prof. Giuseppe Frassanito.
IL PIANO CARTESIANO E LA RETTA
Luogo geometrico In geometria esistono delle figure formati da punti che soddisfano a delle particolari condizioni. Queste figure costituiscono dei luoghi.
IISS "E. Medi" - Galatone Prof. Giuseppe Frassanito a.s. 2012/2013
CONICHE.
1. Le coordinate di un punto su un piano Le coordinate di un punto su un piano 2. La lunghezza e il punto medio di un segmento La lunghezza e il punto.
IISS "E.Medi" Galatone (LE)
Prof.Giuseppe Frassanito
prof.Giuseppe Frassanito a.s
Luoghi di punti In geometria il termine
La Circonferenza. LA CIRCONFERENZA Assegnato nel piano un punto C detto Centro, si chiama circonferenza la curva piana con i punti equidistanti da C.
Se il piano è perpendicolare (ortogonale) all’altezza del cono abbiamo la CIRCONFERENZA! LA CIRCONFERENZA COME LUOGO GEOMETRICO: la circonferenza.
Transcript della presentazione:

Le sezioni coniche di Apollonio e i luoghi geometrici di Descartes Rosa Zollo Liceo Scientifico “G. Galilei” Pescara

APPROCCIO SCOLASTICO ALLE SEZIONI CONICHE Storia dell’arte Proprietà della parabola come proprietà di uno specchio parabolico Costruzione per punti del grafico del moto di un proiettile Osservazione della zona della parete illuminata da una torcia

Come l’uomo ha sviluppato il concetto delle sezioni coniche Osservazione dello spazio circostante Possibile descrizione delle sezioni coniche

La costruzione secondo Menecmo PARABOLA ORTOTOME IPERBOLE AMBLITOME ELLISSE OXITOME

APOLLONIO di Perga (262 - 190 a.C.) Libro “ Coniche” Definizione di cono Se una retta, prolungata all'infinito e passante sempre per un punto fisso, viene fatta ruotare lungo la circonferenza di un cerchio che non si trovi nello stesso piano del punto in modo che passi successivamente attraverso ogni punto di quella circonferenza, la retta che ruota traccerà la superficie di un cono doppio

THEOREMA XI PROPOSITIO XI “Si conus plano per axem secetur; secetur autem et altero plano secante basis secundum rectam lineam, quae ad basim trianguli per axem sit perpendicularis: et sit diameter sectionis uni later trianguli per axem aequidistans: recta linea, quae a sectione coni ducitur aequidistans communi sectioni plani secantis, et basis coni, usque ad sectionis diametrum; poterit spatium aequale contento linea, quaeex diametro abscissa inter ipsam et verticemsectionis interiicitur, et alia quadam, quae ad linea inter coni angulum, et verticem sectionis interiectam, eam proportionem habeat, quam quadratum basis trianguli per axem, ad id quod reliquis duobus trianguli lateribus continetur. Dicantur autem huiusmodi sectio parabole.”

THEOREMA XI PROPOSITIO XI Un cono sia tagliato da un piano a passante per l’asse del cono e da un altro piano b secante la base del cono secondo una retta ED perpendicolare alla base BC del triangolo passante per l’asse del cono. Inoltre il diametro ZH della sezione conica risultante sia parallelo ad uno dei due lati (ad esempio AC) del triangolo passante per l’asse del cono. S dimostra allora che il quadrato di ogni segmento KP condotto dalla sezione conica sul diametro della conica parallelamente al segmento ED è equivalente al rettangolo che ha per lati il segmento ZP, Z vertice della sezione conica risultante, ed un segmento OZ individuato dalla seguente relazione: TALE SEZIONE VERRÀ CHIAMATA PARABOLA

THEOREMA XIII PROPOSITIO XIII PP1 : PL = AF2 : (BF . FC) THEOREMA XIII PROPOSITIO XIII Un cono sia tagliato da un piano a passante per l’asse del cono e da un altro piano b che, incontrando ciascuno dei lati del triangolo passante per l’asse del cono, non sia condotto né parallelamente né antiparallelamente alla base del cono, inoltre il piano della base del cono e il piano secante b si incontrino secondo una retta perpendicolare alla base del triangolo passante per l’asse del cono secondo una retta ED perpendicolare alla base BC del piano a, perpendicolare al prolungamento di questa base. Si dimostra che il quadrato di ogni segmento condotto da un punto della sezione conica (così ottenuta) parallelamente alla retta risultante dalla intersezione fra il piano secante b e la base del cono, fino al diametro della sezione conica è equivalente all’area (ottenuta nel modo che segue), con riferimento alla figura si tracci dal vertice A del cono la parallela al diametro PP1 che incontrerà il prolungamento della base del triangolo BC nel punto F. Si applichi quindi al punto P un segmento PL che verifichi la condizione: PP1 : PL = AF2 : (BF . FC) Quindi da V si conduca la parallela a PL che lo interseca in R , si consideri quindi il rettangolo ottenuto moltiplicando PV con VR. TALE SEZIONE VERRÀ CHIAMATA ELLISSE

THEOREMA XII PROPOSITIO XII Un cono sia tagliato da un piano a passante per l’asse del cono e da un altro piano b che, incontrando ciascuno dei lati del triangolo passante per l’asse del cono, non sia condotto parallelamente alla base del cono, inoltre il piano a della base del cono e il piano secante b si incontrino secondo una retta perpendicolare alla base del triangolo passante per l’asse del cono secondo una retta ED perpendicolare alla base BC in un punto interno a tale lato. Si dimostra che il quadrato di ogni segmento condotto da un punto della sezione conica (così ottenuta) parallelamente alla retta risultante dalla intersezione fra il piano secante b e la base del cono, fino al diametro della sezione conica è equivalente all’area (ottenuta nel modo che segue), con riferimento alla figura si tracci dal vertice A del cono la parallela al diametro PP1 (si osservi che il punto P1 si trova sull’altra falda del cono) che incontrerà la base del triangolo BC nel punto F. Si applichi quindi al punto P un segmento PL che verifichi la condizione: PP1 : PL = AF2 : (BF . FC) Quindi da V si conduca la parallela a PL che lo interseca in R, situato sul prolungamento di P1L , si consideri quindi il rettangolo ottenuto moltiplicando PV con VR. TALE SEZIONE VERRÀ CHIAMATA IPERBOLE

Analisi del testo dei teoremi INTERPRETAZIONE GRAFICA DEGLI STUDENTI

PARABOLA

ELLISSE

IPERBOLE

EQUAZIONE CARTESIANA DELLE CONICHE COSTRUZIONE EQUAZIONE CARTESIANA DELLE CONICHE

Equazione cartesiana della PARABOLA Sia P l’origine degli assi cartesiani ZP = x PK = y PL indica il parametro p Dalla tesi abbiamo KP2 = OZ. ZP Quindi y2 = px

Equazione cartesiana della ELLISSE Sia V l’origine degli assi cartesiani PV = x QV = y PL indica il parametro k, PP ‘ diametro a dell’ellisse Dalla similitudine dei triangoli PP’L e P’VR si ottiene LS = (k/a)x Dalla tesi abbiamo QV2 = VR . PV = (PL – LS)PV Quindi y2 = kx - (k/a) x2

Equazione cartesiana della IPERBOLE Sia V l’origine degli assi cartesiani PV = x QV = y PL indica il parametro k, PP’ l’asse trasverso dell’iperbole a Dalla similitudine dei triangoli PP’L e P’VR si ottiene VR = (x + a)k/a Dalla tesi abbiamo QV2 = VR . PV Quindi y2 = kx + (k/a) x2

COSTRUZIONE DEI LUOGHI GEOMETRICI EQUAZIONE CARTESIANA COSTRUZIONE DEI LUOGHI GEOMETRICI

GEOMETRIE (1637) DESCARTES (1596-1650) Problema delle costruzioni indeterminate

Se le rette sono tre o quattro Problema di Pappo Date tre rette in un piano trovare la posizione di tutti i punti da cui si possono tracciare rette che intersecano le rette date n modo tale che il rettangolo contenuto da due delle due rette costruite abbia un rapporto dato con il quadrato della terza retta costruita. Se le rette fissate sono quattro allora il rettangolo contenuto da due delle due rette costruite ha un rapporto dato con il rettangolo costruito dalle altre due. Se le rette sono tre o quattro il luogo generato è una sezione conica

CR . CQ = k CP2

Curva di secondo grado In questa costruzione fissa tre rette AG, OD ed AL. Considera il fascio di rette improprio generato da CD, pendenza fissa b/c. la curva è generata dai punti P intersezione di AL e CD, al variare di AL nel fascio di centro A e al variare delle rette nel fascio CD.

Luogo geometrico della PARABOLA Fissate tre rette due parallele L1 ,L2 ed una perpendicolare L3 Il luogo geometrico è determinato da tutti i punti P d1d2 = ad3 EQUAZIONE CARTESIANA ay = x2 – 2ax

Luogo geometrico della IPERBOLE Fissate tre rette due parallele L1 ,L2 ed una perpendicolare L3 Il luogo geometrico è determinato da tutti i punti P che verificano d1d3 = ad2 EQUAZIONE CARTESIANA xy = a(2a – x)

Punto di vista di Descartes CONCLUSIONI Analisi delle costruzioni Punto di vista Apollonio Punto di vista di Descartes Costruzione sezione Luoghi geometrici Equazione cartesiana Costruzione grafico del luogo