1 La circonferenza e il cerchio 1 circonferenza

Slides:



Advertisements
Presentazioni simili
Definizione e proprietà del parallelogramma
Advertisements

1 I triangoli Definizione
I triangoli.
Rette perpendicolari Due rette r e s si dicono perpendicolari se, incontrandosi, formano quattro angoli fra loro congruenti; ciascuno di questi angoli.
AUTORE: CAGNONI VALENTINA
Il triangolo è il poligono con il minor numero di lati.
Angoli alla circonferenza
I Triangoli.
ASCISSA SOPRA UNA RETTA
STEREOS: SOLIDO METRIA: MISURAZIONE
Teorema di Talete Un fascio di rette parallele determina su due trasversali classi di segmenti proporzionali. A’ A B B’ AB:BC=A’B’:B’C’ C C’
SOMMARIO Definizioni Angoli al centro e angoli alla circonferenza
1 ESEMPIO F ~ F’’ Definizione
Il linguaggio della geometria
1 Grandezze omogenee, commensurabili e incommensurabili
1 Poligoni inscritti e circoscritti
Elementi di Matematica
I luoghi geometrici della CIRCONFERENZA e del CERCHIO.
SCUOLA MEDIA STATALE “A. MENDOLA” – FAVARA – A. S
GEOMETRIA SOLIDA o STEREOMETRIA
A cura dei Docenti: Prof. ssa Alessandra SIA – Prof. Salvatore MENNITI.
LE CIRCONFERENZE.
Poligoni inscritti e circoscritti
GEOMETRIA EUCLIDEA POSTULATI SULLA RETTA A • B •
I POLIGONI E IN PARTICOLARE I TRIANGOLI..
ELEMENTI DI GEOMETRIA EUCLIDEA NELLO SPAZIO
GEOMETRIA EUCLIDEA o RAZIONALE
RETTE E PIANI NELLO SPAZIO
Circonferenza - Cerchio
Cap. 13 Cerchio e circonferenza
Gli angoli.
Circonferenza e cerchio
PROPIETA' – PROBLEMI RISOLTI
Circonferenza - Cerchio
× × = 1 ESEMPI DI LUOGHI GEOMETRICI Luoghi geometrici
Luogo geometrico Definizione: un luogo geometrico di punti è l'insieme di tutti e soli i punti che soddisfano una certa proprietà p (detta caratteristica.
CONICHE 1. coniche come “luoghi solidi”
Utilizzando un compasso tracciamo una linea curva chiusa che viene detta circonferenza.
Circonferenze e rette nel piano
CIRCONFERENZA E CERCHIO
I TRIANGOLI Il triangolo è un poligono formato da tre angoli o vertici e da tre lati. Il triangolo è la forma geometrica con il minor numero di lati perché.
I triangoli.
I triangoli indice: Cosa sono i poligoni Cos’è il triangolo? Proprietà
CIRCONFERENZA, CERCHIO E LORO PARTI
LA CIRCONFERENZA E IL CERCHIO
Illustrazione dal “Paradiso Perduto” di Milton (libro VII)
Circonferenza e cerchio
Elementi fondamentali della
Circonferenza e cerchio
CIRCONFERENZA E CERCHIO
IL TRIANGOLO.
Triangoli Di Mattia Zagallo.
Angoli al centro e le figure a essi corrispondenti
GEOMETRIA PRIMI PASSI Retta Semiretta Segmento Angolo.
CIRCONFERENZA E CERCHIO
I triangoli.
Trasformazioni geometriche
GEOMETRIA PIANA: ASSIOMI E POSTULATI
Luogo geometrico In geometria esistono delle figure formati da punti che soddisfano a delle particolari condizioni. Queste figure costituiscono dei luoghi.
La misura della circonferenza e del cerchio
prof.Giuseppe Frassanito a.s
Le caratteristiche generali di un quadrilatero
Il cilindro DEFINIZIONE. Si dice cilindro il solido generato dalla rotazione completa di un rettangolo attorno ad uno dei suoi lati. Analizzando la figura.
IL CERCHIO E LA CIRCONFERENZA.
La Circonferenza. LA CIRCONFERENZA Assegnato nel piano un punto C detto Centro, si chiama circonferenza la curva piana con i punti equidistanti da C.
PRESENTAZIONE DI GEOMETRIA SOLIDA
La circonferenza e il cerchio
Formazione docenti – LIM
La circonferenza e il cerchio
Transcript della presentazione:

1 La circonferenza e il cerchio 1 circonferenza DEFINIZIONE. La circonferenza è l’insieme di tutti e soli i punti di un piano equidistanti da un punto fisso detto centro. O cerchio DEFINIZIONE. Il cerchio è la parte di piano costituita dalla circonferenza e dai punti ad essa interni. 1

1 La circonferenza e il cerchio 2 Le parti di una circonferenza DEFINIZIONE. Presi due punti A e B su una circonferenza, si chiama arco ciascuna delle due parti in cui la circonferenza viene divisa; lo si indica con la scrittura: AB I due punti scelti sulla circonferenza vengono detti estremi dell’arco. 2

1 La circonferenza e il cerchio 3 DEFINIZIONE. Si dice corda di una circonferenza ogni segmento che abbia gli estremi appartenenti alla circonferenza. DEFINIZIONE. Si dice diametro di una circonferenza ogni corda passante per il centro della circonferenza. Esso divide il cerchio in due parti congruenti dette semicerchi. Gli estremi di un diametro dividono una circonferenza in due semicirconferenze. PROPRIETÀ. I diametri di una circonferenza sono tutti fra loro congruenti; in particolare d = 2  r. 3

2 Le proprietà della circonferenza 4 PROPRIETÀ. La perpendicolare condotta dal centro di una circonferenza ad una corda divide tale corda a metà. PROPRIETÀ. La perpendicolare ad una corda nel suo punto medio (asse della corda) passa per il centro della circonferenza. PROPRIETÀ. In una stessa circonferenza ad archi congruenti corrispondono corde congruenti e viceversa. TEOREMA. Due corde congruenti di una stessa circonferenza hanno la stessa distanza dal centro. 4

3 Le parti di un cerchio DEFINIZIONE. Si chiama settore circolare ognuna delle due parti in cui un cerchio è diviso da due suoi raggi. DEFINIZIONE. Si chiama segmento circolare ad una base ognuna delle due parti in cui un cerchio è diviso da una sua corda. DEFINIZIONE. Si chiama segmento circolare a due basi la parte di cerchio compresa fra due corde parallele. La distanza fra le due basi si chiama altezza. 5

4 Le posizioni di una retta rispetto ad una circonferenza 6 s 1. Primo caso OP > r r O DEFINIZIONE. Una retta è esterna ad una circonferenza se non ha con essa alcun punto in comune. P s r O 2. Secondo caso OP = r P DEFINIZIONE. Una retta è tangente ad una circonferenza se ha un solo punto in comune con essa; questo è detto punto di tangenza. PROPRIETÀ. La tangente ad una circonferenza è sempre perpendicolare al raggio nel punto di tangenza. 6

4 Le posizioni di una retta rispetto ad una circonferenza 7 s 3. Terzo casco OP < r A B r O DEFINIZIONE. Una retta è secante ad una circonferenza se ha due punti distinti in comune con essa. P T1 T2 O PROPRIETÀ. Se da un punto esterno ad una circonferenza conduciamo le tangenti a quest’ultima, otteniamo due segmenti di tangente tra loro congruenti. P PROPRIETÀ. La semiretta che congiunge il punto esterno con il centro della circonferenza è bisettrice dell’angolo formato dalle due tangenti stesse. 7

5 Le posizioni di due circonferenze 8 1. Primo caso DEFINIZIONE. Due circonferenze si dicono esterne l’una all’altra se la distanza dei loro centri è maggiore della somma dei loro raggi: OO’ > r + r’ r O r’ O’ 2. Secondo caso r O DEFINIZIONE. Due circonferenze si dicono tangenti esternamente se la distanza dei loro centri è congruente alla somma dei loro raggi: OO’ = r + r’ r’ O’ P 8

OO’ < r + r’; OO’ > r – r’ 5 Le posizioni di due circonferenze 3. Terzo caso DEFINIZIONE. Due circonferenze si dicono secanti se la distanza dei loro centri è minore della somma dei loro raggi e maggiore della loro differenza: OO’ < r + r’; OO’ > r – r’ r O A B r’ O’ 4. Quarto caso r O DEFINIZIONE. Due circonferenze si dicono tangenti internamente se la distanza dei loro centri è congruente alla differenza dei loro raggi: OO’ = r – r’ r’ O’ A 9

5 Le posizioni di due circonferenze 10 5. Quinto caso DEFINIZIONE. Due circonferenze si dicono una interna all’altra se la distanza dei loro centri è minore della differenza dei loro raggi: OO’ < r – r’ r’ O’ r DEFINIZIONE. Due circonferenze si dicono concentriche se hanno lo stesso centro. r’ O O’ DEFINIZIONE. La parte di piano delimitata da due circonferenze concentriche di raggi disuguali è detta corona circolare. 10

6 Gli angoli al centro e alla circonferenza 11 DEFINIZIONE. Si chiama angolo al centro di una circonferenza ogni angolo avente il vertice nel suo centro. PROPRIETÀ. Angoli al centro congruenti insistono su archi congruenti e viceversa ad archi congruenti corrispondono angoli al centro congruenti. 11

6 Gli angoli al centro e alla circonferenza 12 DEFINIZIONE. Si chiama angolo alla circonferenza un angolo convesso con il vertice su di essa e i lati entrambi secanti la circonferenza. DEFINIZIONE. Si chiama angolo alla circonferenza un angolo convesso con il vertice su di essa e un lato secante e uno tangente la circonferenza. DEFINIZIONE. Si chiama angolo alla circonferenza un angolo convesso con il vertice su di essa e entrambi i lati tangenti la circonferenza. Area 4 - Capitolo 1 - PAG. 306 12

6 Gli angoli al centro e alla circonferenza 13 PROPRIETÀ. Ad ogni angolo alla circonferenza corrisponde un solo arco sul quale insiste; viceversa ad ogni arco corrispondono infiniti angoli alla circonferenza. 13

6 Gli angoli al centro e alla circonferenza 14 Relazione tra angoli al centro e angoli alla circonferenza TEOREMA. Ogni angolo alla circonferenza è la metà del corrispondente angolo al centro. PROPRIETÀ. Tutti gli angoli alla circonferenza che insistono su uno steso arco sono fra loro congruenti. 14

6 Gli angoli al centro e alla circonferenza 15 PROPRIETÀ. Ogni angolo alla circonferenza che insiste su una semicirconferenza è retto. PROPRIETÀ. Tutti i triangoli aventi un vertice sulla circonferenza e un lato coincidente con il diametro sono triangoli rettangoli. PROPRIETÀ. In ogni triangolo rettangolo la mediana relativa all’ipotenusa è congruente alla metà dell’ipotenusa stessa. 15