Lezione 2 Argomenti della lezione Moto nel piano

Slides:



Advertisements
Presentazioni simili
Moti Circolari e oscillatori
Advertisements

HALLIDAY - capitolo 4 problema 4
LA DESCRIZIONE DEL MOTO
CINEMATICA SINTESI E APPUNTI.
Il moto del proiettile.
Agenda per oggi Cinematica 2-D, 3-D 1.
Cinematica: la descrizione del moto dei punti materiali
Meccanica 3 7 marzo 2011 Cinematica in due dimensioni
GETTO DEL PESO Modello fisico del getto del peso.
IL MOTO CIRCOLARE UNIFORME.
Moto di un “punto materiale” P nello spazio tridimensionale:
Cinematica: moto dei corpi Dinamica: cause del moto
MECCANICA (descrizione del moto dei corpi)
Lapproccio moderno alla Cinematica zIl concetto di evento zLo spazio e il tempo zIl moto zLa velocità zLaccelerazione zIl problema fondamentale della Cinematica.
Determinazione del moto – 1 dimensione
Il concetto di “punto materiale”
G. Pugliese, corso di Fisica Generale
Il moto armonico Altro esempio interessante di moto è quello armonico caratterizzato dal fatto che l’accelerazione è proporzionale all’opposto della posizione:
Il corpo rigido È un particolare sistema di punti materiali in cui le distanze, tra due qualunque dei suoi punti, non variano nel tempo un corpo rigido.
Velocità ed accelerazione
Posizione di un punto nello spazio
Determinazione del moto: 2 & 3 dimensioni
L’accelerazione riferita alla traiettoria
L’accelerazione riferita alla traiettoria
Grandezze scalari e vettoriali
Moti con accelerazione costante
Caso Mono-dimensionale
Moto Curvilineo.
Corso di Fisica - Cinematica
Il Movimento Cinematica.
CINEMATICA Lezione n.3 –Fisica ITI «Torricelli» –S.Agata M.llo (ME)
IL MOTO DI UN PROIETTILE
Biomeccanica Cinematica Dinamica Statica dei corpi rigidi
Vettori Finche’ il moto si svolge in una sola dimensione – moto unidimensionale, moto rettilineo – non abbiamo bisogno di vettori La posizione e’ individuata.
Velocita’ La velocita’ istantanea ad un determinato istante e’ il tasso di incremento o decremento della posizione di un corpo in quell’istante Essendo.
Accelerazione nel Moto Circolare uniformemente accelerato
2. Meccanica Fisica Medica – Giulio Caracciolo.
Meccanica 6. I moti nel piano (II).
Meccanica 6. I moti nel piano (II).
Energia meccanica CINETICA POTENZIALE
Testi e dispense consigliati
il moto rotatorio di un corpo rigido
IL MOVIMENTO Spazio e tempo Spostamento Legge oraria Velocita’
Progetto a cura di Davide Iacuitto e Leonardo Nardis
Esempio 1 Un bombardiere vola con velocità orizzontale vx costante di 400 km/h ad una altezza di 3000 m dirigendosi verso un punto che si trova esattamente.
GRANDEZZE SCALARI E VETTORIALI
Moto di un proiettile Il moto di un proiettile è il moto di un peso che viene lanciato in aria obliquamente. Il lancio di una palla da baseball, da golf.
Moto circolare uniforme
Cinematica Punto materiale: modello che rappresenta un oggetto di piccole dimensioni in moto Traiettoria: linea che unisce tutte le posizioni attraverso.
Prof. Francesco Zampieri
Moto Curvilineo : Posizione, Velocità ed Accellerazione
LA FORZA CENTRIPETA Caprari Riccardo Scalia Lucrezia.
Esercizi (attrito trascurabile)
4. I moti nel piano e nello spazio (II)
4. I moti nel piano e nello spazio (II)
Cinematica Un corpo è in moto quando la sua posizione rispetto ad un altro, assunto come riferimento, varia nel tempo. Solitamente si considera un riferimento.
Meccanica 10. Le forze e il movimento.
MOTO circolare uniforme
Prendendo in considerazione il moto dei corpi estesi, per i quali varia nel tempo l’orientazione nello spazio. Possiamo parlare del moto rotatorio.
Esercizio-Tre blocchi di massa rispettivamente m 1 =5Kg, m 2 =2 Kg e m 3 =3Kg poggiano su un piano orizzontale e sono uniti da due funi (vedi figura).
Università Federico II di Napoli Facoltà di Scienze Matematiche Fisiche e Naturali Corso di laurea in Informatica Fisica Sperimentale I Gruppo 1 Docente.
Cinematica del punto materiale Studia il moto dei corpi senza riferimento alle sue cause Il moto è completamente determinato se e` nota la posizione del.
Cinematica in 2 d. Moto parabolico Moti circolari Sono i moti che avvengono lungo una circonferenza Velocità cambia direzione continuamente.
Transcript della presentazione:

Lezione 2 Argomenti della lezione Moto nel piano Descrizione del moto nel piano con coordinate cartesiane – polari - intrinseche Moto circolare Moto parabolico

Moto nel piano Concetto di vettore che individua il punto nel piano. Posizione individuata anche da coordinate (cartesiane o polari)

Analogamente per l’accelerazione: Moto nel piano Vettore spostamento / Vettore posizione Posizione: r(t)=OP=x(t)ux+y(t)uy Velocità istantanea Analogamente per l’accelerazione:

Moto nel piano Coordinate cartesiane   Posizione: r(t)=OP=x(t)ux+y(t)uy

Moto nel piano Coordinate polari Posizione: r(t)=OP=x(t)ux+y(t)uy=r(t) ur   x y O q ur uq

Coordinate intrinseche   Il vantaggio della notazione vettoriale sta nel fatto che è indipendente dal sistema di coordinate, e quindi permette di scrivere in maniera semplice le equazioni senza preoccuparsi di definire un sistema di coordinate. Consideriamo s coordinata curvilinea

Coordinate intrinseche accelerazione Accelerazione tangenziale Accelerazione normale o centripeta

Moto circolare uniforme ha accelerazione normale alla traiettoria x y O un ut q s R costante! Moto circolare uniforme ha accelerazione normale alla traiettoria Moto periodico con periodo

Moto circolare Esempio Il rotore di una centrifuga ruota a 3000 giri/min. A quanti radianti al secondo equivale questa velocità angolare? Sapendo che il rotore ha un diametro di 30 cm, calcolare il modulo della velocità tangenziale e dell'accelerazione centripeta. Un giro del rotore è uguale a 2p radianti, dunque la velocità angolare è: w = 3000 2p (rad/min) = 6000p rad/min = 100p rad/sec. Il modulo della velocità tangenziale è w r: v = (2p r / T) = w r da cui si ottiene: v = 100p rad/sec 0,15 m = 15p m/sec Il modulo dell'accelerazione centripeta è w2r=v2/r=15000m/sec2.

Moto parabolico Condizioni iniziali: al tempo t=0 s ho accelerazione in modulo g, velocità iniziale v0, posizioni iniziali x e y uguali a zero. Scopo: trovare la legge oraria Metodo: scomporre le componenti dei vettori!!

Moto parabolico Nel nostro caso

Moto parabolico Ricordiamo il caso unidimensionale

Moto parabolico Ricordiamo il caso unidimensionale

Moto parabolico Equazione della traiettoria Moto di tipo parabolico

Moto parabolico Calcolo di gittata e massima quota raggiunta dall’oggetto per il calcolo della gittata OG impongo y=0 e ottengo notiamo che il massimo viene raggiunto per il valore

Moto parabolico Esempio Un arciere lancia una freccia in aria con un'inclinazione di 60 gradi, ad una distanza di 36 metri da un bersaglio posto a 2 metri dal suolo. La freccia viene scoccata da un'altezza di 1.5 metri dal terreno e con una velocità iniziale, V0 di 20 m/s . Verificare se la freccia riesce a colpire il bersaglio. Soluzione: Incognite: tvolo (tempo necessario affinché la freccia copra la distanza di 36 metri); y(tvolo) (altezza della freccia dopo i 36 metri di volo); Per determinare la velocità iniziale della freccia: V0x= V0*cos(q) Quindi V0x= 10 m/s Per il calcolo del tempo di volo tvolo: tvolo=x/V0x=36m/10m/s=3.6 s Per determinare V0y: V0y = V0.sen(q)= 17 m/s Per determinare y(tvolo): y(tvolo) = (V0y*tvolo) + (1/2g*tvolo2 )= (17 m/s *3.6 s) +(- 4.9 m/s2 * 13 s2) = -2.3 m Dal risultato negativo si deduce che la freccia cade in anticipo e quindi il bersaglio non viene colpito. Affinché il bersaglio venga colpito y(t) avrebbe dovuto essere uguale a 0.5 m.