Elettronica digitale Giovanni Ambrosi Matteo Duranti

Slides:



Advertisements
Presentazioni simili
Primary Italian Saying How You Are.
Advertisements

Algebra di Boole Casazza Andrea 3EA I.I.S. Maserati.
D. Menasce1 Queste trasparenze sono disponibili sul sito web dellautore: (selezionare lopzione COURSES) Queste.
Elaborazione dei segnali mediante circuiti analogici o digitali.
Algebra di Boole..
Circuiti logici dedicati
Algebra di Boole.
Esercitazioni su circuiti combinatori
Reti Logiche A Lezione n.1.4 Introduzione alle porte logiche
Analisi e sintesi di circuiti combinatori
Sintesi con circuiti LSI-MSI
Cenni sugli amplificatori
Transistor MOSFET Dispositivo a semiconduttore con tre terminali
BRISCOLA GO ON AVANTI. Storia I giochi di carte hanno le origini più disparate e vengono collocati in differenti epoche, la Briscola risale al La.
Famiglie MOS Ci sono due tipi di MOSFET:
Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Circuito Invertitore (1) Implementazione della funzione NOT in logica positiva V(1) = 12 Volts.
Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 I Transistori I transistor sono dispositivi con tre terminali sviluppati dal I tre terminali.
Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Retta di carico (1) La retta dipende solo da entità esterne al diodo.
Conversione Analogico/Digitale
Sintesi con circuiti LSI-MSI. Realizzazione di reti combinatorie mediante Multiplexers Un multiplexer (MPX ) é una rete combinatoria con N ingressi, una.
Indice: L’algebra di Boole Applicazione dell’algebra di Boole
PRESENTAZIONE DEGLI ARGOMENTI: SIMBOLI GRAFICI E RELATIVE OPERAZIONI LOGICHE TABELLE DI VERITA INTEGRATI DIGITALI DELLE FAMIGLIE TTL E CMOS E LORO RICONOSCIMENTO.
Motor Sizing.
Frequency Domain Processing
Algebra di Boole.
Chapter 5 - Part 2 1 Procedura di sintesi  Specifiche  Formulazione – Ricavare un diagramma o una tabella di stato  Assegnazione della codifica di stato.
Algebra di Boole.
L’invertitore Circuiti Integrati Digitali L’ottica del progettista
Famiglie logiche generalità
PINK FLOYD DOGS You gotta be crazy, you gotta have a real need. You gotta sleep on your toes. And when you're on the street. You gotta be able to pick.
Consumo di potenza.
Ontologia AA F. Orilia. Lez. 16 Discussione dell'approccio controfattualista di lewis condotta da Antonio De Grandis.
Circuiti logici.
ADC – SCHEMA GENERALE I convertitori AD sono disponibili come circuiti integrati in diversi modelli, che differiscono fra loro per prezzo, prestazioni.
DISPOSITIVI E CIRCUITI INTEGRATI
Corso di Laurea in Ingegneria dell’Informazione
Circuiti Sequenziali Elementi di memoria Logic combinatoria Inputs
Dispositivi e sistemi logici
University of Padova Information Engineering Dept. – Microelectronics Lab. Corso di Laurea in Ingegneria dell’Informazione Elettronica Digitale - Lezione.
Fondamenti di Informatica1 Memorizzazione su calcolatore L'unità atomica è il bit (BInary DigiT) L'insieme di 8 bit è detta byte Altre forme di memorizzazione:
RETI LOGICHE Daniele Manzaroli
Circuiti digitali Architettura © Roberto Bisiani, 2000,2001
Accoppiamento scalare
Algebra di Boole.
SUMMARY Time domain and frequency domain RIEPILOGO Dominio del tempo e della frequenza RIEPILOGO Dominio del tempo e della frequenza.
Viruses.
NANDNOR A BA NAND B falso vero falso vero vero vero falso vero falso A BA NOR B falso vero falso vero falso vero falso falso vero falso
SUMMARY Quadripoles and equivalent circuits RIEPILOGO Quadripoli e circuiti equivalenti RIEPILOGO Quadripoli e circuiti equivalenti.
Conversione Analogico/Digitale Le grandezze fisiche che vogliamo misurare variano con continuità in un dato intervallo ed in funzione del tempo: sono descrivibili.
SUMMARY Dinamic analysis RIEPILOGO Analisi dinamica RIEPILOGO Analisi dinamica.
Circuiti matematici con amplificatori operazionali
RIEPILOGO Transistor JFET
SUMMARY Transmission and distribution of the electric energy RIEPILOGO Trasmissione e distribuzione dell’energia elettrica RIEPILOGO Trasmissione e distribuzione.
SUMMARY Thyristors RIEPILOGO I thyristor RIEPILOGO I thyristor.
Summary Module 1 – Unit 1 (Current, potential difference, resistance) RIEPILOGO Modulo 1 – Unità 1 (Corrente, tensione, resistenza)
SUMMARY Different classes and distortions RIEPILOGO Le diverse classi e le distorsioni RIEPILOGO Le diverse classi e le distorsioni.
Tipologie e caratteristiche degli amplificatori a retroazione
SUMMARY A/D converters RIEPILOGO Convertitori A/D RIEPILOGO Convertitori A/D.
FAMIGLIE LOGICHE.
Filtri del secondo ordine e diagrammi di Bode
SUMMARY Real operational amplifiers RIEPILOGO Amplificatori operazionali reali RIEPILOGO Amplificatori operazionali reali.
SUMMARY Interconnection of quadripoles RIEPILOGO Interconnessione di quadripoli RIEPILOGO Interconnessione di quadripoli.
Esercizio n o 3 Si realizzi una calcolatrice a 32 bit con interfaccia “normale” (decimale) con LabView, utilizzando SOLAMENTE: –convertitore decimale (input)
Logica di base e Conversione analogico-digitale Lezione 3 / Prima parte Gaetano Arena e.mail: 1.
Calliope-Louisa Sotiropoulou I NTRODUZIONE ALLA T ECNOLOGIA D ELL ’FPGA F IELD P ROGRAMMABLE G ATE A RRAYS PISA, 02/03/2016 Marie Curie IAPP Fellow - University.
Laboratorio II, modulo Elettronica digitale ( cfr. )
Laboratorio II, modulo Conversione Analogico/Digitale ( cfr.
Comparatore e FlashADC con l’Op.Amp. “TDC” con l’FPGA LM35
Laboratorio II, modulo Elettronica digitale (cfr.
Laboratorio II, modulo Elettronica digitale (2a parte) (cfr.
Transcript della presentazione:

Elettronica digitale Giovanni Ambrosi Matteo Duranti

ADC (1) Dal punto di vista funzionale gli ADC sono dei classificatori: –L’intervallo di variabilità del segnale V x viene diviso in n intervalli, detti canali, di ampiezza costante K. Definiamo quindi V i = K i + V o –Il segnale in ingresso V x viene classificato nel canale i-esimo se è verificata la relazione V i-1 < V x < V i –Inevitabilmente si ha un errore di quantizzazione

ADC (2) Vmin Vmax Vmin Vmax

Winter 2012 UCSD: Physics 121; Comparators It is very often useful to generate a strong electrical signal associated with some eventIt is very often useful to generate a strong electrical signal associated with some event If we frame the “event” in terms of a voltage threshold, then we use a comparator to tell us when the threshold is exceededIf we frame the “event” in terms of a voltage threshold, then we use a comparator to tell us when the threshold is exceeded –could be at a certain temperature, light level, etc.: anything that can be turned into a voltage Could use an op-amp without feedbackCould use an op-amp without feedback –set inverting input at threshold –feed test signal into non-inverting output –op-amp will rail (negative rail if test reference) But op-amps have relatively slow “slew rate”But op-amps have relatively slow “slew rate” –15 V/  s means 2  s to go rail-to-rail if powered  15 V

Winter 2012 UCSD: Physics 121; Enter the comparator When V in < V ref, V out is pulled high (through the pull-up resistor— usually 1 k  or more)When V in < V ref, V out is pulled high (through the pull-up resistor— usually 1 k  or more) –this arrangement is called “open collector” output: the output is basically the collector of an npn transistor: in saturation it will be pulled toward the emitter (ground), but if the transistor is not driven (no base current), the collector will float up to the pull-up voltage The output is a “digital” version of the signalThe output is a “digital” version of the signal –with settable low and high values (here ground and 5V) Comparators also good at turning a slow edge into a fast oneComparators also good at turning a slow edge into a fast one –for better timing precision +  V ref V in V out +5 V R 5 V V ref V out V in time V

Elettronica digitale continuo discreto analogicodigitale Stati logici solo due possibili stati Funzioni logiche 1, alto (H), vero (true) 0, basso (L), falso (false) Algebra booleana sistema matematico per l’analisi di stati logici solo 3 funzioni logiche di base AND OR NOT circuiti usati per la realizzazione di funzioni logiche Porte logiche +5 V S V0V0

Porte logiche di base - OR T1T1 T2T2 T3T3 T4T4 t v A B Q OR A B Q ABQ A+B+C = (A+B)+C = A+(B+C) A+B = B+A A+1 = 1, A+A = A, A+0 = A Q = A+B

Porte logiche di base - AND T1T1 T2T2 T3T3 T4T4 t v A B Q AND ABQ A B Q A·B·C = (A·B)·C = A·(B·C) A · B = B · A A · 1 = A, A · A = A, A · 0 = 0 A · (B+C) = A · B + A · C Q = A · B

Porte logiche di base - NOT NOT A Q AQ sapendo che

Porte logiche di base – NAND NAND Q = A · B ABQ T1T1 T2T2 T3T3 T4T4 t v A B Q porta universale A B Q

Porte logiche di base – NOR NOR ABQ T1T1 T2T2 T3T3 T4T4 t v A B Q Q = A + B A B Q

Porte logiche di base – XOR XOR ABQ Q = A B+ T1T1 T2T2 T3T3 T4T4 t v A B Q A B Q OR esclusivo

Winter 2012 UCSD: Physics 121; Data manipulation All data manipulation is based on logicAll data manipulation is based on logic Logic follows well defined rules, producing predictable digital output from certain inputLogic follows well defined rules, producing predictable digital output from certain input Examples:Examples: A B C AND A B C OR A B C XOR A B C NAND A B C NOR ABAB ABAB ABAB ABAB ABAB C bubbles mean inverted (e.g., NOT AND  NAND) A A C NOT

Algebra Booleana Il complemento dell’AND di più variabili logiche è dato dall’OR dei complementi Il complemento dell’OR di più variabili logiche è dato dall’AND dei complementi Algebra booleana trasformare una funzione logica in un’altra di più facile implementazione hardware Teoremi di De Morgan

Algebra Booleana Ogni riga come prodotto (AND) dei termini naturali (se 1) o complementati (se 0) Somma (OR) delle righe con valore pari a 1. Ogni riga come somma (OR) dei termini naturali (se 1) o complementati (se 0) Prodotto (AND) delle righe con valore pari a 0. Prima forma canonica (esempio) Seconda forma canonica (esempio)

Algebra Booleana Un circuito AND per logica positiva funziona come un OR per logica negativa non è necessario usare i tre circuiti di base B A Q B A Q B A Q B A Q OR e NOT oppure AND e NOT bastano due

Winter 2012 UCSD: Physics 121; All Logic from NANDs Alone A B C NAND ABAB A C NOT A B C AND A B C OR A B C NOR invert output (invert NAND) invert both inputs invert inputs and output (invert OR)

Famiglie logiche Famiglie logiche più diffuse e usate CMOS (Complementary MOS) NMOS (MOSFET a canale n) TTL (Transistor-Transistor Logic) ECL (Emitter Coupled Logic) transistor FET transistor BJT Le porte logiche possono essere fabbricate con le varie tecnologie in un singolo chip con stesse funzioni, compatibili numero di porte SSI small scale integration (1-10 gates) MSI medium scale integration ( gates) LSI large scale integration (~ 10 3 ) VLSI very large scale integration (~ 10 6 ) ULSI ultra large scale integration (> 10 6 )

Invertitore T1T1 T2T2 T3T3 T4T4 t v A Q Può essere realizzato in una delle diverse famiglie logiche 1)transizione istantanea 2)potenza dissipata nulla 3)stato di uscita determinato solo dallo stato di ingresso NMOS permette la maggiore densità di componenti transistor MOSFET utilizzati sia come interruttori che come resistenze minimizzazione dell’area occupata La porta logica più semplice da realizzare è l’invertitore (NOT) invertitore ideale

Winter 2012 UCSD: Physics 121; Logic Families TTL: transistor-transistor logic: BJT basedTTL: transistor-transistor logic: BJT based –chips have L, LS, F, AS, ALS, or H designation –output: logic high has V OH > 3.3 V; logic low has V OL < 0.35 V –input: logic high has V IH > 2.0 V; logic low has V IL < 0.8 V –dead zone between 0.8V and 2.0 V nominal threshold: V T = 1.5 V CMOS: complimentary MOSFETCMOS: complimentary MOSFET –chips have HC or AC designation –output: logic high has V OH > 4.7 V; logic low has V OL < 0.2 V –input: logic high has V IH > 3.7 V; logic low has V IL < 1.3 V –dead zone between 1.3V and 3.7 V nominal threshold: V T = 2.5 V –chips with HCT are CMOS with TTL-compatible thresholds

Invertitore V CC V out vsvs RCRC IBIB ICIC RBRB logica TTL (BJT) v in v out +V DD logica NMOS (MOSFET) Realizzazione: è di fatto un interruttore

Winter 2012 UCSD: Physics 121; MOSFET Switches MOSFETs, as applied to logic designs, act as voltage- controlled switchesMOSFETs, as applied to logic designs, act as voltage- controlled switches –n-channel MOSFET is closed (conducts) when positive voltage (+5 V) is applied, open when zero voltage –p-channel MOSFET is open when positive voltage (+5 V) is applied, closed (conducts) when zero voltage (MOSFET means metal-oxide semiconductor field effect transistor) source drain gate source gate drain 5 V 0 V 5 V0 V + voltage 0 V5 V < 5 V n-channel MOSFET p-channel MOSFET “body” connection often tied to “source”

Winter 2012 UCSD: Physics 121; An inverter (NOT) from MOSFETS: 5 V 0 V inputoutput 5 V 0 V 5 V 0 V 0 V input turns OFF lower (n-channel) FET, turns ON upper (p-channel), so output is connected to +5 V0 V input turns OFF lower (n-channel) FET, turns ON upper (p-channel), so output is connected to +5 V 5 V input turns ON lower (n-channel) FET, turns OFF upper (p-channel), so output is connected to 0 V5 V input turns ON lower (n-channel) FET, turns OFF upper (p-channel), so output is connected to 0 V –Net effect is logic inversion: 0  5; 5  0 Complementary MOSFET pairs  CMOSComplementary MOSFET pairs  CMOS A A C NOT

Winter 2012 UCSD: Physics 121; A NAND gate from scratch: 5 V 0 V IN A IN B OUT C Both inputs at zero: –lower two FETs OFF, upper two ON –result is output HI Both inputs at 5 V: –lower two FETs ON, upper two OFF –result is output LOW IN A at 5V, IN B at 0 V: –upper left OFF, lowest ON –upper right ON, middle OFF –result is output HI IN A at 0 V, IN B at 5 V: –opposite of previous entry –result is output HI A B C NAND ABAB 0 V C

Winter 2012 UCSD: Physics 121; A NOR gate from scratch: 5 V 0 V IN A IN B OUT C Both inputs at zero: –lower two FETs OFF, upper two ON –result is output HI Both inputs at 5 V: –lower two FETs ON, upper two OFF –result is output LOW IN A at 5V, IN B at 0 V: –lower left OFF, lower right ON –upper ON, middle OFF –result is output LOW IN A at 0 V, IN B at 5 V: –opposite of previous entry –result is output LOW A B C NOR 5 V ABAB C just a NAND flipped upside-down…

Winter 2012 UCSD: Physics 121; Rule the World Now you know how to build ALL logic gates out of n-channel and p-channel MOSFETsNow you know how to build ALL logic gates out of n-channel and p-channel MOSFETs –because you can build a NAND from 4 MOSFETs –and all gates from NANDs That means you can build computersThat means you can build computers So now you can rule the world!So now you can rule the world!

Winter 2012 UCSD: Physics 121; Arithmetic Example Let’s add two binary numbers:Let’s add two binary numbers: = = = 123 How did we do this? We have rules:How did we do this? We have rules: = 0; = = 1; = 10 (2): (0, carry 1); (carried 1) = 11 (3): (1, carry 1) Rules can be represented by gatesRules can be represented by gates –If two input digits are A & B, output digit looks like XOR operation (but need to account for carry operation) A B C XOR ABAB

Half Adder A B RS HA ABSR XORAND A B R = A · B Q = A B = A·B + A·B+

Half Adder Somma binaria è analoga alla somma decimale: 1)sommare i due bit corrispondenti al digit 2 n 2)sommare il risultato al riporto dal digit 2 n-1 Il circuito sommatore a due ingressi è detto Half Adder ne occorrono due per fare una somma completa può essere costruito con i circuiti di base due input i bit da sommare due output la somma e il riporto

Full Adder Tabella di verità della somma di 3 bit AnAn BnBn R n-1 SnSn RnRn

Full Adder Espressione booleana corrispondente alla tabella di verità possiamo riscrivere R n, sapendo che Q+Q+Q = Q

Full Adder possiamo riscrivere la somma S n ma quindi

Full Adder -circuito AnAn BnBn RnRn R n-1 SnSn

Winter 2012 UCSD: Physics 121; Binary Arithmetic in Gates A B C in D C out F E H G A B C in E F H G D C out Input Intermediate Output Each digit requires 6 gates Each gate has ~6 transistors ~36 transistors per digit + A B C in D C out “Integrated” Chip

Full Adder 3 input e 2 output Una somma di 4 bit può essere eseguita in parallelo usando 4 Full Adders AiAi BiBi RiRi SiSi FA R i-1 A3A3 B3B3 S3S3 R3R3 FA3 R2R2 A2A2 B2B2 S2S2 R2R2 FA2 R1R1 A1A1 B1B1 S1S1 R1R1 FA1 R0R0 A0A0 B0B0 S0S0 R0R0 FA0 R -1

Winter 2012 UCSD: Physics 121; bit binary arithmetic (cascaded) = = = MSB LSB = Least Significant Bit Carry-out tied to carry-in of next digit. “Magically” adds two binary numbers Up to ~300 transistors for this basic function. Also need –, , , & lots more. Integrated one-digit binary arithmetic unit (prev. slide)

Somma seriale AnAn BnBn SnSn RnRn FA R n-1 D LSB Una unità di ritardo in più D = T fra gli impulsi impulso di riporto in tempo con i bit da sommare

Circuiti digitali combinatoriali Output dipende solo dalla configurazione degli input  Operazioni aritmetiche  Selezione di dati  Decodifica Operazioni base: addizione e sottrazione 14 piedini 1 alimentazione + 1 massa 4 circuiti separati

Nomenclatura circuiti AA 74 AAA XXX P due lettere indicano la casa costruttrice tre lettere che indicano la sottofamiglia numeri indicano la funzione del circuito SN74ALS245N 74, sempre uguale means this is a device probably made by Texas Instruments (SN), it is a commercial temperature range TTL device (74), it is a member of the “Advanced Low-power Schottky" family (ALS), and it is a bi-directional eight-bit buffer (245) in a plastic through-hole DIP package (N). lettere che identificano il contenitore (packaging)

Sottofamiglie TTL TTL STD standard LS low power Schottky S Schottky ALS advanced low power Schottky AS advanced Schottky veloci basso consumo

Confronto famiglie logiche TTLCMOSECL tensione massima di alimentazione valore massimo V in identificato come valore minimo V in identificato come valore massimo V out identificato come valore minimo V out identificato come

Circuiti digitali Sistema digitale Unità di controllo (logica) Unità aritmetica Memoria Meccanismi di input e output pochi circuiti fondamentali NAND tutte le operazioni logiche celle di memoria

Winter 2012 UCSD: Physics 121; Computer technology built up from pieces The foregoing example illustrates the way in which computer technology is builtThe foregoing example illustrates the way in which computer technology is built –start with little pieces (transistors acting as switches) –combine pieces into functional blocks (gates) –combine these blocks into higher-level function (e.g., addition) –combine these new blocks into cascade (e.g., 8-bit addition) –blocks get increasingly complex, more capable Nobody on earth understands Pentium chip inside-outNobody on earth understands Pentium chip inside-out –Grab previously developed blocks and run –Let a computer design the gate arrangements (eyes closed!)