1 AMMONIA AND WATER FLUXES MODELLING OVER AGRICULTURAL PLOTS Gianfranco Rana CRA – Unità di ricerca per i Sistemi Colturali degli Ambienti caldo aridi, Bari INRA – Unité Mixte Recherche Environnement et Grandes Cultures, Grignon, France AMMONIA AND WATER FLUXES MODELLING OVER AGRICULTURAL PLOTS
2 Summary FIDES 3D –Transport model –The sources and the sinks of ammonia Voltair –Mechanistic model –Ammonia volatilization Water fluxes –A review on the reference evapotranspiration
3 Problems with NH 3 sampling and flux measure Tendence to make strong hydrogen link with H 2 O Adsorbment and memory effect Punctual sources, spatial variability Time variability Dispersion, possible minimum deposition
4 NH 3 volatilization from agricultural system It dipends on (Sommer et al., 2003): NH 4 + concentration Temperature, solar radiation, wind speed, rain, air humidity … Turbolent transport pH Evaporation rate, dew Soil type, soil moisture Application techniques The process: NH 3 transfert from nitrogen liquid solution to the air in contact N applied losses: Urea: 10-25%; Slurry: > 60%
5 FIDES3D: Flux Interpretation by Dispersion and Exchange over Short range in three Dimensions Loubet et al., 2001; Loubet et al., 2010 Hypothesis Advection-diffusion equation (Philip, 1959) Power laws for wind speed and vertical diffusivity profiles (Huang, 1979) No chimical reactions in atmosphere and surface Inputs: Turbulence of atmosphere Concentration of NH 3 at background and level z Fetch, geometrical properties of the source
6 Superposing principle It relates the concentration of scalar in a point of the field to the source strength in another point (Raupach, 1989; Thompson, 1998) Principles Source strength in (x s, y s,z s ): function of R b (u *, B) e C c Dispersion Function
7 Surface/air NH 3 exchange The resistance analogy approach a stomatal pathway a cuticular pathway Ammonia has a canopy compensation point =concentration value for which the flux is zero
8 Set-up
9 Final considerations on FIDES3D the following input are needed: (1) the NH 3 air concentration at least at one height above the surface (2) the background concentration (3) the standard micrometeorological variables acquired usually by a sonic anemometer (4) the dimension of the local source along the wind direction and the fetch where the NH 3 is measured From the computational point of view –the cuticular resistance R w and the strength S s are considered as unknown and they are inferred with a standard iterative method using the classical Netwon-Raphton technique –once R w and S s are calculated the advection flux F a of ammonia is estimated by a numerical integration of the advection- dispersion equation
10 Voltair (Génermont and Cellier, 1997) Ammonia volatilization from the surface Van der Molen et al. (1990) Transfer of ammonia from the surface toward the atmosphere
11 Starting hypothesis Urea is converted to ammoniacal nitrogen and carbonate within a few hours after application The simulation takes place for a short period (week), thus nitrogen transformations by organic matter mineralization, ammoniacal uptake by the plants, oxidation and/or nitrification are not taken into account for The mineralization of the organic nitrogen from the slurry is considered to be negligible
12 The flux of ammonia is bidirectional and the source is not known a priori Model of local advection (Itier and Perrier, 1976) Change in the surface flux as a function of the distance from the leading edge in the wind direction (fetch) and the difference in the surface concentration for an abrupt change in the surface concentration The flux of ammonia is bidirectional and the source is not known a priori Model of local advection (Itier and Perrier, 1976) Change in the surface flux as a function of the distance from the leading edge in the wind direction (fetch) and the difference in the surface concentration for an abrupt change in the surface concentration
13 Inputs: 1. general information
14 Inputs: 2. agricultural practices
15 Inputs: 3. soil hydraulic properties
16 Inputs: 4. physical and chemical properties
17 Inputs: 5. Soil
18 Inputs: 6. Meteorology
19 Landriano (45° 18; 9° 15' E) (Università di Milano) Field ~ 4 ha bare soil March 2009 Surface spreading of cow slurry, filling after 24 h ~184 kgN ha -1 ~93 kgN-NH 4 + ha -1 Slurry spreading 15 cm
20 NH 3 Flux by FIDES3D Soil filling Start spreading
21 Rutigliano (CRA-SCA Bari) July 2008 Grain Sorghum (~ 2 ha) Urea application: 30 kgN ha -1 (01/07/2008) 90 kgN ha -1 (16/07/2008) 120 kgN ha -1 (22/07/2008) Irrigation by aspersion Urea spreading
22 NH3 Flux by FIDES3D
23 Cumulate values
24 WATER FLUXES Katerji, N., Rana, G., Crop reference evapotranspiration: a discussion of the concept, analysis of the process and validation. Water Resources Management, on line since 5 January DOI /s
25 Analisi teorica e fisica dellevaporazione Penman (1946): evaporazione da superficie di acqua libera Monteith ( ): evapotraspirazione da una coltura teorica Thom ( ): formalizzazione della resistenza aerodinamica Perrier ( ): evapotraspirazione da una coltura reale
26 Evaporazione potenziale (Penman) Nessun controllo biologico da parte di una eventuale coltura Nessun controllo dovuto alla struttura di una eventuale coltura Può rappresentare bene la domanda evaporativa dellatmosfera
27 Evaporazione potenziale di una coltura (Perrier) Una coltura con acqua sempre disponibile oppone solo una resistenza dovuta alla sua struttura
28 CropHeightClimatic conditions r0r0 Grass0.1Normal0-5 Bean0.4Normal5-10 Maize0.6Normal10-15 Maize2.2Normal20-30 Wheat0.2Weak demand0 Wheat0.4Weak demand6 Wheat0.6Weak demand10 Wheat0.2Normal5 Wheat0.4Normal10 Wheat0.6Normal20 -Situazione teorica -Solo dopo una pioggia o rugiada o irrigazione per aspersione -Le due quantità possono essere uguali per il prato in particolari condizioni Evaporazione potenziale di una coltura (Perrier)
29 Evapotraspirazione (Monteith) Se non vi è nessuna saturazione a nessun livello allora la coltura oppone una resistenza biologica: la resistenza colturale Questa varia tra un minimo, quando la coltura è in buone condizioni idriche e un massimo quando è completamente secca
30
31 Relazione resistenza stomatica/resistenza colturale Monteith et al. (1965)
32 Sintesi Penman -> Perrier -> Monteith -Situazione teorica -Solo dopo una pioggia o rugiada o irrigazione per aspersione -Le due quantità possono essere uguali per il prato in particolari condizioni
33, ρ, γ, c p quasi constanti A, energia disponibile = R n -G –R n, radiazione netta –G, flusso di calore nel suolo D, deficit di pressione di vapore r a, resistenza aerodinamica r c, resistenza colturale Modello di Penman-Monteith versione Perrier Le misure dovrebbero esser fatte SULLA COLTURA
34 Prato di riferimento Ben irrigato Ben concimato cm Esteso Solo una specie (lolium perenne L.)
35 Penman-Monteith FAO56 ET 0 calcolata sopra un prato di riferimento Scala temporale –C n =37 e C p =0.24 –C n =900 e C p =0.34 Resistenza colturale costante
36
37 r c =70 s/m r c =50 s/m Storia della resistenza colturale costante per un prato Allen et al., (1989; 1994; 1998; 2006)
38 Monteith, J.L., Evaporation and the environment. XIXth Symposia of the Society for Experimental Biology. In the State and Movement of Water in Living Organisms. University Press, Swansea, Cambridge, pp. 205–234
39 J. Appl. Ecology, 1965 *Rothamsted, UK
40 Pubblicazioni 1.Katerji, N., Rana, G., Mastrorilli, M., Modelling of actual evapotranspiration in open top chambre (OTC) at daily and seasonal scale: Multiannual validation on soybean in contrasted conditions of water stress and air ozone concentration. European Journal of Agronomy, 33, Rana, G., Katerji, N., Ferrara, R., Martinelli, N., An operational model to estimate hourly and daily crop evapotranspiration in hilly terrain: validation on wheat and oat crops. Theoretical and Applied Climatology (on line, under press) 3.Katerji, N., Rana, G., Fahed, S., Parameterizing canopy resistance using mechanistic and semi-empirical estimates of hourly evapotranspiration: critical evaluation for irrigated crops in the Mediterranean. Hydrological Processes (on line, under press) 4.Loubet, B., Gènermont, S., Ferrara, R., Bedos, C., Decuq, C., Personne, E., Fanucci, O., Durand, B., Rana, G., Cellier, P., An inverse model to estimate ammonia emissions from fields. Eur. J. Soil Sci (on line, under press) 5.Katerji, N., Rana, G., Crop reference evapotranspiration: a discussion of the concept, analysis of the process and validation. Water Resources Management, (on line, under press). 6.R. M. Ferrara, B. Loubet, P. Di tommasi, T. Bertolini, V. Magliulo, P. Cellier, G. Rana. Evaluation of eddy covariance measurement of ammonia fluxes with a Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS) (in preparazione). 7.R. M. Ferrara, B. Loubet, P. D. Palumbo, V. Magliulo, G. Rana. Dynamic of ammonia volatilization over sorghum fertilized under Mediterranean conditions (in preparazione).
41