La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

A. Colaleo1 Stato produzione Stato installazione e commissioning RPC nell’MTCC Phase 1 Phase 2 Attivita’ dopo l’MTCC Stato cablaggio Stato sistema monitoring.

Presentazioni simili


Presentazione sul tema: "A. Colaleo1 Stato produzione Stato installazione e commissioning RPC nell’MTCC Phase 1 Phase 2 Attivita’ dopo l’MTCC Stato cablaggio Stato sistema monitoring."— Transcript della presentazione:

1 A. Colaleo1 Stato produzione Stato installazione e commissioning RPC nell’MTCC Phase 1 Phase 2 Attivita’ dopo l’MTCC Stato cablaggio Stato sistema monitoring del gas Stato dell’elettronica Sommario Stato progetto RPC A. Colaleo –INFN BARI

2 A. Colaleo2 Produzione Single Gap completata: circa 3000 single gap prodotte e testate Double Gapproduction  completed Single & Double Gap Production 16.5 % of rejection ProdotteAccettateScartate (4.7 %)

3 A. Colaleo3 Chamber Production Chamber production: 448/480 chambers have been accepted at test sites Bari – Pavia – Sofia  To finish production: 10 Chambers under test in Bari  ready by the end of September 22 Chambers in construction at General Tecnica  6 needed for next installation ready by the end of October

4 A. Colaleo4 Barrel 416 chambers already accepted through the ISR pipeline 24 chambers under test – foreseen ready first week october 8 chambers to be tested – foreseen ready end october Final dressing Final cooling, HV connectors, temperature sensors Detector control Gas leak Threshold setting and reading Current vs. HV Long stability test ( V) Performance Single rate (hits count.) vs. HV Noise rate (cluster count.) vs. HV Cluster size vs. HV Commissiong camere all’ISR

5 A. Colaleo5 Barrel Commissiong camere all’ISR 420 camere sono state testate 4 di queste ancora sotto test di stabilita’ in corrente

6 A. Colaleo6 Settori 1-7 installati underground Wheels+1/W+2/W0 installate eccetto settori 1-7 W-1, W-2 installati settori 10,11 + alcune MB4 Installazione

7 A. Colaleo7 Coupling Dopo l’accoppiamento all’ISR e prima dell’installazione a SX5: controlli di perdita di gas, intergrita’ HV, controllo di connettivita’ delle strip e sistema controllo soglie schede FE, controllo sistema cooling (RPC/DT/MC) Dopo l’installazione : Connessione cavi di grounding Gas system test: Connessione al distributore di gas e calibrazione flow cells Controllo perdite gas Equalizzazione dei flussi nella stazione Test prima e dopo installazione

8 A. Colaleo8 Barrel For each sector HV/LV test Noise Current stability for 48 hours Commissioning camere installate Wheel +1 All basic test done Chamber sect 5/RB2 replaced due to broken HV cable 1 FEB connector replaced in sect 9/RB1 1 HV connector replaced on sect 12/RB3 Wheel +2 All basic test done Chamber sect 12/RB3 replaced due to gas leak 3 Distribution Board replaced on sect 9/4 RB1 chambers (wrong threshold control via DT MC (backup line)). 1 FB replaced in sect 9 /RB2. Wheel 0/-1/-2 ( 12 sectors) Basic test done in all sector of W0, excluded sect 4-5 Broken HV connector in W0 sect 8 RB2 Discharging HV connector in W0 sect 6 RB2 Gas rack for W-1, W-2 to be commissioned

9 A. Colaleo9 Barrel CERN 22 June 2006, CMS Plenary CMS RPC Collaboration HV 9200 V Hz/strip Strip = 420 cm 2 Current Noise rate HV 9200 V Commissioning camere installate < 0.25 Hz/cm2 < 1.5 microA

10 A. Colaleo10 SX5 planning after the field mapping W.Van Doninck A. Benvenuti

11 A. Colaleo11 Status Detector installation Attivita’ a SX5 dopo MTCC II YB-1: 24 DT - 48 RPC - QUASI TUTTE GIA’ ACCOPPIATE Large MB4 : 8 Chambers - 16 RPC YB-2: 26 Chambers - 52 RPC YB0 feet: 2Chambers - 2 RPC UX YB+2, YB+1: 16 Chambers - 32 RPC DT+RPC coupling must proceed at 3 chambers/day in order to match the installation rate during the first 3 weeks UX installation rate of 2 chambers/day assumed for YB+2 and of 3 for YB RPC da installare

12 A. Colaleo12 Gas distributor commissioning on W-1, W-2 Gas system W0 cabling Cabling Installation of LV boards in W+1 and W+2 Installation of Linkboard on W+1 and W+2 Functionality test of full link system Electronics Attivita’ a SX5 dopo MTCC II W0 sector 4-5 SX5 W-1, W-2 all sectors UX W+1, W+2 sect 1-7 Detector commissioning

13 A. Colaleo13 MTCC Test the full chamber/electronics/DAQ/Software chain and trigger system RPC Chambers YB+1 S10: LBB with 15 LBs and RBC1 YB+2 S10: LBB with 15 LBs, S11: LBB with 3 LBs and RBC2 Trigger Crate with the 1 Trigger Board with: 14 optical links from LBs, Stratix2 PAC mezzanine board, Control Crate with CSC TTC crate with LTC, TTCci and TTCex On Tower Control Room CB FEB Slave LB SU Coder Master LB SU Coder Trigger Board PAC GB & Sorter PAC RMB LTCLTC I2C TC Backplane Slave LB SU Coder RBC Trigger LVDS signal RBC Data Concentrator Card Filter Farm Phase 2

14 A. Colaleo14 RPC triggers al MTCC patterns for the endcap and W+2 Sector 10 only: majority level 4/6 final geometry straight patterns on single strips for the tower 2 (W+1) (majority level 4/6) "pointing to the tracker": based on OR of all strips of one eta partition (roll) of one chamber, majority level 5/6, the 6th layer - RB4 (only middle strips) is required Separate triggers (LVDS signals) for each wheel to LTC Patterns based on OR of all strips of one eta partition (roll) of one chamber (i.e. one LB) calculated by each LB, no patterns crossing 2 wheels, Each chamber can be masked or forced, Configurable majority level, usually we used: –5/6 - trigger rate ~30 Hz per wheel –6/6 - trigger rate ~14 Hz per wheel W+2: Sect. 10 Sect. 11 Sect patterns OR RBC2 W+1: Sect. 10 RBC1 RBC TB TB and RBCs triggers were well synchronized to each other

15 A. Colaleo15 Minor problems with the gas distribution. A faulty IR analyzer was often producing false alarms. Optimize gas bottle replacement. Equalization of the gas flow among the different stations has been proved to be possible and no variation observed in B-Fied Operation in open loop. Interlock system is working (CAEN ) Gas system control information not available in Control Room. RPC al MTCC: servizi Gas Some of the chamber at T > 24 C° for few days. Very important to have stable and low temperature. Wheel W+2 at higher temperature with respect to W+1. To be understood. Cooling

16 A. Colaleo16 MTCC: LV/HV/FEB LV stable system. Noise induced by the system on the detector is extremely low ( peak to peak ripple about 30 mVolts). An unexpected instability of the current readout was found, not previously detected in the lab tests (B field or ADC instability?). CAEN at work Only a couple of faulty connectors on the multi-polar HV cable on the patch panel side. No faulty FEB. Threshold control to be improved to have the possibility of addressing a single board. HV/LV

17 A. Colaleo17 The final state machine works very well. System run smoothly reading 300 hardware channels. No problems found. The present DCS server was appropriate to deal with the existing hardware. DSS: wrong gas mixture signal to DSS implemented for MTCC phase 2 problem in cooling circuit (low flow or high temperature) to be implemented in phase 2 MTCC:DCS and DSS

18 A. Colaleo18 MTCC: Iguana Event Display Combined offline RPC (green) and DT digis RPC detector data were read out locally with TriggerBoard PAC diagnostic readout and offline converted to common data format of global DAQ  standard CMSSW tools for unpacking and DQM used Black = DT hits Green = RPC hits DT global (4 stations) and Barrel RPC local data (6 layers) merged offline

19 A. Colaleo19 Analisi preliminare: DQM Occupancy, noise, cluster size, noise maps. Refine threshold values. DT/RPC reconstruction tools needed.

20 A. Colaleo20 6/6 - trigger rate ~14 Hz per wheel Efficiency plateau RBC1 and RBC2 triggers vs. variation of the RPCs HV set points

21 A. Colaleo21 MTCC II plans Complete trigger chain: LB → TB → HSB → FSB → GMT Final geometry – pointing to the vertex: 3 Sectors × 7 Towers  2 Trigger Crates × 2 TBs × 3(4) PACs Final PAC and Ghost Buster and Sorter algorithms can be tested, no special firmware needed! PAC patterns – final patterns (vertex muons), but wider i.e. defined on 4 or 8 strips (to have better acceptance) Normal DAQ: 4 RMB mezzanines + DCC Phase 2 will allow the RPC to run closely to the final configuration Warsaw

22 A. Colaleo22 RPC cable status Cable detector – rack installation status: W+2 and W+1 cabling completed (40 % of the cables on detector) Cables detector – rack for W0 produced to be tested Ready end of October LB crates LB crates installed and backplane cabled on both wheels (except X3 and X4 near)

23 A. Colaleo23 RPC cable status

24 A. Colaleo24 Work in progress -Production and installation of W0, W-1, W-2 -Routing of the long cables between detector hall and electronic house - patch panel organisation - production of cables not on detector

25 A. Colaleo25 GAS monitoring Gas gain monitoring system –Sviluppo del conceptual design, approvato CSN1 maggio 2006 e parzialmente finanziato, –Studio dei flussi di gas all’interno di RPC gaps tramite simulazione CFD volta a verificare il lavaggio efficace delle camere e l’eventuale ristagno di contaminanti –Analisi SEM-EDS e diffrattometriche (c/o laboratori di Ingegneria Roma 1) su camere irraggiate alla GIF nel 2001, –Studio di differenti sistemi di analisi gas: ph-metri, µGC analysis, F- specific eletrode Caratterizzazione del sistema di ricircolo del gas “Closed Loop” – Campagna di misure sistematiche per la caratterizzazione chimica dei filtri impiegati

26 A. Colaleo26 USC5UXC5 C 2 H 2 F 4 /SF 6 /i-C 4 H 10 /H 2 O Slow Ctrl GC, p/T/RH/Ph CMS VENT PURIFIERS SGX Bldg RPC TRIG2 RPC TRIG1 RPC TRIG4 RPC TRIG3 RPC PAD REF2 RPC PAD REF1 RPC PAD MON6 RPC PAD MON5 REFERENCE MPX half wheel lines VENT RPC PAD MON4 RPC PAD MON3 RPC PAD MON2 RPC PAD MON1 MONITOR VENT Gas Gain Monitor ( conceptual design ) Monitoring continuo del punto di lavoro (efficienza, carica) con cosmici nel gas building su 3 sottosistemi di RPC pads 50cmx50cm nello stesso telescopio 1.REFERENCE con gas clean open-loop 2.MONITOR “OUT” con gas closed-loop dopo CMS-RPC 3.MONITOR “IN” con gas closed-loop dopo purifiers e prima di CMS Studi di fattibilita’ con su RPC recuperati e sviluppo elettronica ad hoc a Frascati.

27 A. Colaleo27 Studio del sistema di Closed Loop Sono in corso campagne di misure sistematiche su campioni di filtri con metodi chimici, SEM/EDS e diffrattometrici. In operazione da Sept. 05 sul circuito di gas dell’ ISR – circa 110 l/h flusso totale –30 linee – ma generalmente ~10 Ch. connessi –Percentuale di miscela fresca : 10% (RH 40%) Da molti studi del sistema risulta che funziona correttamente per circa 20 giorni dopodiche’ si osserva innalzamento delle correnti in alcune camere. Le correnti tornano nei valori normali in seguito alla rigenerazione dei filtri Studio del sistema di closed loop e’ cruciale per una operazione sicura degli RPC nell’esperimento: importante realizzare un test esaustivo all’ISR e alla GIF dopo installazione camere (Primavera 07)

28 A. Colaleo28 Receive optical link from RBCs Combine ORs from 1 Wheel and produce Wheel Cosmic Trigger  Global Trigger as Technical Trigger The full RBC production is expected to be available before the end of 2006 Progetto RPC Technical Trigger Wheel-Based Cosmic Trigger UXC areaUSC area Wheel Trigger LBBox RBC LBBox RBC LBBox RBC LBBox RBC LBBox RBC LBBox RBC LBBox Barrel Wheel TTU 6 Fibers/wheel Fiber GLOBAL TRIGGER RBC (RPC Balcony Collector) Technical Trigger Unit TTU The design of the new firmware and the backplane for the Trigger Board-TTU will start in few weeks The required functions are performed by the RPC Trigger Board (Warsaw): 3 TB for full the barrel

29 A. Colaleo29 Progetto SORTER RPC Trigger Electronics System (general view)

30 A. Colaleo30 Half detector Sorter 2 Half detector Sorter 1 Final Sorter Board Endcaps Outputs Input from Trigger Crate Barrel Outputs Sorter Crate layout Un crate completo e' stato prodotto, testato al 904 ed installato Un backplane ed un Full sorter spare sono gia' stati prodotti e sono da testare, mentre sono in produzione due half-sorter spare. Algorimi del Sorter saranno testati al MTCC fase 2 Progetto SORTER

31 A. Colaleo31 Conclusioni Produzione e test delle camere in Italia termina in Ottobre Test al CERN procedono a ritmo sostenuto : 412 camere testate, 32 camere ancora da testare per la prossima installazione. Intensa attivita’ di accoppiamento/installazione e commissioning prevista per fine anno. Importante effettuare test dell’elettronica (Link system) in superficie MTCC costituisce un importante test di tutta la catena di trigger/DCS e di lettura del rivelatore: differenti tipi di trigger sono stati implementati con il sistema RPC durante il test. Intensa attivita’ di software sull’DQM /event display per garantire una immediata interpretazione dei dati. Sviluppo del sistema di gas monitoring e comprensione sistema di ricircolo sono fondamentali per garantire le prestazioni delle camere nel tempo. Cablaggio 40 % dei cavi installati. Progressi nell’integrazione dei cavi con il resto del sistema e degli altri rivelatori Iniziata la produzione e test dell’elettronica per RBC/TTU e Sorter.

32 A. Colaleo32 CH type RB1RB2/4RB3All Built Rejected 19 (14.4 %)30 (11.5 %)18 (13.7%)67 (13 %) Chamber Production per type


Scaricare ppt "A. Colaleo1 Stato produzione Stato installazione e commissioning RPC nell’MTCC Phase 1 Phase 2 Attivita’ dopo l’MTCC Stato cablaggio Stato sistema monitoring."

Presentazioni simili


Annunci Google