La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Time Series Discords Algoritmi e Applicazioni De Benedetto Benedetta Giombetti Nicola Corso di Sistemi Informativi per le Decisioni L-S Anno accademico.

Presentazioni simili


Presentazione sul tema: "Time Series Discords Algoritmi e Applicazioni De Benedetto Benedetta Giombetti Nicola Corso di Sistemi Informativi per le Decisioni L-S Anno accademico."— Transcript della presentazione:

1 Time Series Discords Algoritmi e Applicazioni De Benedetto Benedetta Giombetti Nicola Corso di Sistemi Informativi per le Decisioni L-S Anno accademico Prof. M. Patella

2 Time series sequenze di rilevazioni effettuate nel tempo Esempio di serie temporale: Elettrocardiogramma In letteratura l’analisi delle serie temporali è mirata alla ricerca della similarità tra sequenze di valori allo scopo di: Predire ed estrapolare valori futuri Ricercare occorrenze di pattern conosciuti Individuare nuovi pattern …

3 Finding Time series discords Applicazioni per DM: Clustering improving quality Data cleaning Anomaly Detection Ricerca di sottosequenze che si discostano maggiormente da tutte le altre

4 Alcune definizioni Time Series: Time Series: una time series T = t 1,…,t m è un set ordinato di m variabili a valori reali Subsequence: Subsequence: una subsequence C di T è un campione di elementi contigui appartenenti a T di lunghezza n ≤ m: C = t p,…,t p+n-1 con 1 ≤ p ≤ m – n + 1 Sliding Window: Sliding Window: finestra di dimensione n che individua tutte le possibili subsequence scorrendo su T Dist(C,M): Dist(C,M): funzione distanza tra due subsequence C ed M che supponiamo simmetrica

5 Discords e Trivial Matches La ricerca di Time series discord implica: Il confronto di ogni subsequence con la sua subsequence più simile l’identificazione della coppia di subsequence più differente Problema: Tipicamente i valori minori di Dist si rilevano tra subsequence slittate tra loro di pochi punti (Trivial Matches) a b c a b c a b c a b c X X X a b c a b c a b a c a b XXX è “vicino” a XXa!!

6 Esempio Utilizziamo la distanza di Hamming a b c a b c a b c a b c X X X a b c a b c a b a c a b b c a Min( ) = 0 a 0 b 0 c 0 a 0 b 0 c 0 a 0 b 0 c 0 a 0 b 1 c 1 X 1 X 1 X 1 a 0 b 0 c 0 a 0 b 0 c 0 a 1 b 2 a 1 c 0 ab a b c a b 0 c a b c a b c X X X a b c a b c a b a c ab Ripetendo il procedimento per tutte le subsequence otteniamo… COME ELIMINARE I TRIVIAL MATCHES?!

7 Esempio(2) a 0 b 0 c 0 a 0 b 0 c 0 a 0 b 0 c 0 a 0 b 1 c 1 X 1 X 1 X 1 a 0 b 0 c 0 a 0 b 0 c 0 a 1 b 2 a 1 c 0 ab I confronti fuorvianti (trivial matches) sono così eliminati!! Applicazione del Non_Self Match: a 0 b 0 c 0 a 0 b 0 c 0 a 0 b 0 c 0 a 0 b 1 c 2 X 3 X 2 X 1 a 0 b 0 c 0 a 0 b 0 c 0 a 1 b 2 a 1 c 0 abc Non-Self Match: Non-Self Match: data una serie T, contenete due subsequence C ed M di lunghezza n, che iniziano rispettivamente alle posizione p e q, M è un Non-Self Match di C alla distanza Dist(M,C) se |p-q|>=n Non_Self Match:

8 Definizione formale: Time Series Discord Data una time series T, si definisce Discord di T la subcequence D che ha la distanza maggiore con il suo non-self match più vicino. Ovvero: Data ogni subsequence C di T, ogni non-self match MD di D ogni non-self match MC di C Vale: min(Dist(D, MD)) > min(Dist(C, MC)) Indicheremo con D.l: posizione del Discord D.dist: distanza rispetto al non-self match più vicino Dn: lunghezza del Discord

9 Discords e densità Discords e densità Immaginiamo di proiettare tutte le subsequence di lunghezza 50 in uno spazio vettoriale 50-dimensionale e di misurare la densità di ciascuna Le discords non si trovano in regioni a bassa densità!!! Al contrario la non-self distance riesce ad identificarle chiaramente

10 Brute Force algorthm Function [dist,loc] = Brute_Force(T.n) best_so_far_dist = 0 best_so_far_loc = NaN For p=1 to |T|-n+1//Begin Outer loop nearest_neighbor_dist = infinity For q=1 to |T|-n+1//Begin Inner loop IF |p-q| ≥ n//Non self match IF Dist(tp,...,tp+n-1.tq,...,tq+n-1) < nearest_neighbor_dist nearest_neighbor_dist = Dist(tp,...,tp+n-1.tq,...,tq+n-1) End End//End of non self match End//End of Inner loop IF nearest_neighbor_dist > best_so_far_dist best_so_far_dist = nearest_neighbor_dist best_so_far_loc = p End End//End of Outer loop Return[best_so_far_dist, best_so_far_loc]

11 Caratteristiche del Brute Force Richiede un unico parametro (n) Richiede un unico parametro (n) L’algoritmo non è combinabile L’algoritmo non è combinabile Complessità O(m 2 ) Complessità O(m 2 ) Osservazione1: nell’inner loop non è necessario trovare il miglior match, non appena troviamo un segmento tale che Dist

12 Heuristic algorithm Function [dist,loc] = Heuristic_Search(T.n,Outer,Inner) best_so_far_dist = 0 best_so_far_loc = NaN For Each p in T ordered by heuristic Outer//Begin Outer loop nearest_neighbor_dist = infinity For Each q in T ordered by heuristic Inner//Begin Inner loop IF |p-q| ≥ n//Non self match IF Dist(tp,...,tp+n-1.tq,...,tq+n-1) < best_so_far_dist Break End IF Dist(tp,...,tp+n-1.tq,...,tq+n-1) < nearest_neighbor_dist nearest_neighbor_dist = Dist(tp,...,tp+n-1.tq,...,tq+n-1) End End//End of non self match End//End of Inner loop IF nearest_neighbor_dist > best_so_far_dist best_so_far_dist = nearest_neighbor_dist best_so_far_loc = p End End//End of Outer loop Return[best_so_far_dist, best_so_far_loc]

13 Strategie di ordinamento Random O(m)÷O(m 2 ) Magic O(m) Perverse O(m 2 ) Osservazione3: nell’outer loop è sufficiente trovare un valore di distanza abbastanza grande nelle prime iterazioni Osservazione4: nell’inner loop è sufficiente trovare un valore di distanza minore del valore corrente di best_so_far_dist nelle prime iterazioni Tale ordinamento richiede almeno O(mlogm)!! Come approssimare l’ordinamento “Magic”??

14 SAX (Symbolic Aggregate approXimation) Rappresenta una time series C di lunghezza n in uno spazio vettoriale w-dimensionale ottenendo un vettore  A ciascuna partizione α è associato un simbolo  Ogni subsequence sarà rappresentata da una parola di w simboli equiprobabili

15 Approssimare “Magic” tramite SAX Outer loop: Individuare subsequence meno frequenti Vettore delle occorrenze delle parole individuate Inner loop: Trovare subsequence simili a quella considerata nel punto precedente Albero per la mappatura Quanti bit per simbolo?Solo Strutture significativamente piccole rispetto alla serie temporale di partenza Scelte le prime subsequence le altre possono essere ordinate casualmente

16 Perfezionamento dell’algoritmo Per simmetricità della funzione distanza: individuato nell’inner loop un item C j sufficientemente vicino al candidato dell’outer loop possono essere scartati entrambi Scelta dei parametri α e w : α ottimale: 3 o 4 (empiricamente) w ottimale: dipende dai dati Per dataset con valori relativamente piatti  w ridotto Per dataset con maggiore complessità  w elevato Si osservi che La velocità dell’algoritmo dipende solo marginalmente da w variando w dal 60% al 150% otteniamo un decremento della velocità del 12%

17 Applicazioni (1) Trovare anomalie nella Telemetria Spaziale Rilevazione di enormi quantità di dati mediante sensoristica Problemi più o meno evidenti ad occhio nudo sono facilmente individuati dall’algoritmo con velocità decisamente superiore rispetto al precedente brute force

18 Applicazioni (2) Monitoraggio delle fasi del sonno dei pazienti Problema: non si tratta della classica anomaly detection!!! Al passare del paziente da uno stato all’altro il segnale si modifica  individuare i punti di transizione L’algoritmo di anomaly detection è utilizzabile in quanto vi saranno forme d’onda ‘inusuali’ al passaggio da uno stato all’altro

19 Applicazioni (3) Anomaly detection in ECG Complessità dell’andamento… semplicità nell’individuare le discord …specialmente in caso di riduzioni significative del passo di campionamento!!! Grande aiuto per l’analisi di lunghe serie di dati

20 Utilità dell’ordinamento euristico Il confronto delle distanze tra subsequence corrente e best _so_far_dist occupa più del 99% del tempo di entrambi gli algoritmi Calcolando il numero di chiamate di tale operazione nei 2 algoritmi… Guadagno di almeno 3 ordini di grandezza sulla velocità di esecuzione! Il guadagno aumenta al crescere della dimensione del dataset Nota: nell’heuristic search consideriamo trascurabile il tempo impiegato dall’algoritmo di ordinamento

21 Conclusioni L’algoritmo Heuristic search: Richiede un solo parametro d’ingresso: n Riduce notevolmente i tempi grazie all’ordinamento Richiede un’ulteriore complessità O(m) per l’ordinamento, tuttavia eseguito una sola volta Nella pratica, ha dato risposte concordanti con le annotazioni dei tecnici Future direzioni di sviluppo:  Estensione alla multidimensionalità  Utilizzo di diverse misure di distanza

22 Grazie per l’attenzione…


Scaricare ppt "Time Series Discords Algoritmi e Applicazioni De Benedetto Benedetta Giombetti Nicola Corso di Sistemi Informativi per le Decisioni L-S Anno accademico."

Presentazioni simili


Annunci Google