La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

XI Scuola AiIG - 18 Settembre 2003 - Bressanone 1 Simulazione: I modelli basati su agenti autonomi Ing. Ilaria Giannoccaro Dipartimento di Ingegneria Meccanica.

Presentazioni simili


Presentazione sul tema: "XI Scuola AiIG - 18 Settembre 2003 - Bressanone 1 Simulazione: I modelli basati su agenti autonomi Ing. Ilaria Giannoccaro Dipartimento di Ingegneria Meccanica."— Transcript della presentazione:

1 XI Scuola AiIG - 18 Settembre Bressanone 1 Simulazione: I modelli basati su agenti autonomi Ing. Ilaria Giannoccaro Dipartimento di Ingegneria Meccanica e Gestionale Politecnico di Bari XI Scuola estiva "Strategia e Gestione delle Operations nelle Reti di Imprese" 18 Settembre Bressanone - Accademia "N. Cusanus" Laboratorio

2 XI Scuola AiIG - 18 Settembre Bressanone 2 Agenda Introduzione alla simulazione Simulazione basata su agenti Fasi di sviluppo della simulazione basata su agenti Discussione di un esempio: Sugarscape Prospettive di ricerca per lOM

3 XI Scuola AiIG - 18 Settembre Bressanone 3 Introduzione alla simulazione Ing. Ilaria Giannoccaro

4 XI Scuola AiIG - 18 Settembre Bressanone 4 Alcune definizioni preliminari Simulare significa condurre esperimenti al calcolatore mediante lo sviluppo di modelli matematici o logici atti a riprodurre il comportamento di un sistema reale o dei suoi componenti durante periodi estesi di tempo reale, al fine di acquisire le informazioni necessarie sul comportamento e le perfomance nel tempo del sistema La simulazione definisce levoluzione dinamica del sistema attraverso la rappresentazione degli stati occupati dal sistema nel tempo, poiché gestisce le attività che ne regolano le dinamiche

5 XI Scuola AiIG - 18 Settembre Bressanone 5 Simulazione Run al computer Input Output Modello del sistema Sistema reale

6 XI Scuola AiIG - 18 Settembre Bressanone 6 La simulazione tradizionale Simulazione analitica –modello basato su equazioni risolvibili analiticamente Simulazione numerica –modello basato su equazioni non risolvibili analiticamente ma solo numericamente Fa uso anche di tecniche di ricerca operativa –teoria dei giochi –teoria delle code –processi di decisione markoviani –etc.

7 XI Scuola AiIG - 18 Settembre Bressanone 7 Modello di simulazione Rappresentazione delle componenti del sistema –entità Descrizione delle caratteristiche del sistema –variabili di stato del sistema –attributi del sistema Descrizione dei comportamenti del sistema –funzioni, equazioni matematiche Evento –cambiamento di stato del sistema –rappresentazione del tempo

8 XI Scuola AiIG - 18 Settembre Bressanone 8 Tipi di simulazione Variabili di classificazione –tempistica degli eventi Simulazione ad eventi discreti Simulazione ad eventi continui –grado di incertezza Simulazione deterministica Simulazione stocastica –Simulazione Montecarlo

9 XI Scuola AiIG - 18 Settembre Bressanone 9 Simulazione come metodologia di ricerca Tool per fare previsioni sul comportamento del sistema Tool per testare ipotesi Strumento di theory building Strumento di indagine finalizzato a scoprire nuove relazioni e principi Strumento esplicativo per definire il sistema Strumento per analisi di tipo what-if Fonte di valutazione di soluzione e proposte Strumento di supporto alle decisioni Generatore di ipotesi Strumento di training, entertainement e education Strumento artificiale per svolgere task

10 XI Scuola AiIG - 18 Settembre Bressanone 10 Vantaggi Studio di fenomeni non direttamente accessibili e/o difficili da osservare direttamente Alternativa alla realizzazione di modelli fisici quando questi sono troppo costosi, richiedono tempi elevati e/o sono pericolosi Modelli più realistici che consentono di tener conto dellincertezza dei fenomeni reali Migliore comprensione del funzionamento del sistema

11 XI Scuola AiIG - 18 Settembre Bressanone 11 Svantaggi Metodologia computer-intensive Meno accurata dellanalisi matematica Tempi lunghi per lo sviluppo del modello di simulazione Tempi lunghi richiesti dai run della simulazione

12 XI Scuola AiIG - 18 Settembre Bressanone 12 Simulazione basata sugli agenti Ing. Ilaria Giannoccaro

13 XI Scuola AiIG - 18 Settembre Bressanone 13 Nuova prospettiva La teoria della complessità (TC) –Studio interdisciplinare dei sistemi complessi adattativi (CAS) e dei fenomeni emergenti ad essi associati SIMULAZIONE BASATA SUGLI AGENTI

14 XI Scuola AiIG - 18 Settembre Bressanone 14 Esempi di CAS Perché uno stormo di uccelli vola in un certo ordine? Come si sviluppa una colonia di batteri in un ambiente? Come si scopre qual è la tecnologia vincente tra un insieme di tecnologie concorrenti che si propongono di risolvere lo stesso problema? Come si spiega il funzionamento della borsa?

15 XI Scuola AiIG - 18 Settembre Bressanone 15 Aspetti comuni ai CAS Ci sono agenti che interagiscono – molecole, batteri, uccelli, macchine Ci sono regole che gli agenti seguono Ci sono obiettivi e vincoli contrastanti Ci sono interazioni tra un sistema e laltro Ci sono percorsi di adattamento ai cambiamenti esterni

16 XI Scuola AiIG - 18 Settembre Bressanone 16 Proprietà dei CAS Componenti eterogenee ed interagenti, chiamate agenti Non linearità Elevati livelli di autonomia degli agenti Controllo decentrato Trattamento delle informazioni distribuito Auto-organizzazione ed emergenza Adattamento Apprendimento localizzato Co-evoluzione Stato del sistema quasi allequilibrio (ai confini del caos) Ambiente dinamico

17 XI Scuola AiIG - 18 Settembre Bressanone 17 Fenomeni emergenti Strutture e schemi che emergono a livello macro per effetto delle interazioni tra numerosi agenti a livello micro Nessun agente possiede le proprietà emergenti del sistema La proprietà emergente non può essere ottenuta come la somma dei comportamenti individuali dei singoli agenti

18 XI Scuola AiIG - 18 Settembre Bressanone 18 Applicazioni della TC Biologia (Kaufmann, 1993;1995; Wolfram, 2002) Scienze Sociali –economia (Arthur et al., 1997; Tesfatsion, 2002) –organizzazione (Carley and Gasser, 2000) –strategia aziendale (McKelvey, 1999) Operations Management –impresa (Terna, 2002a,b) –supply chain (Lin and Shaw, 1998) –supply network (Choi et al., 2001)

19 XI Scuola AiIG - 18 Settembre Bressanone 19 Simulazione basata su agenti (SBA) Scienze sociali Agent-based computing Simulazione al computer Modelli cognitivi degli agenti Architetture hardware e software degli agenti MASSS SAAS SBA

20 XI Scuola AiIG - 18 Settembre Bressanone 20 Simulazione basata sugli agenti Definizione –Uso della tecnologia ad agenti per la simulazione di fenomeni sociali al computer Obiettivo –approfondire la conoscenza sui processi fondamentali che regolano il funzionamento di un sistema

21 XI Scuola AiIG - 18 Settembre Bressanone 21 Modelli basati su agenti (MBA) Insieme di agenti –eterogenei –autonomi –interagenti Ambiente esterno Assenza di controllo centrale e gerarchia Approccio alla simulazione di tipo bottom-up

22 XI Scuola AiIG - 18 Settembre Bressanone 22 Alcuni aspetti software Gli agenti sono solitamente implementati come oggetti software Costruire un agente-oggetto significa istanziare la classe agente Gli agenti-oggetti hanno stati e regole di comportamento

23 XI Scuola AiIG - 18 Settembre Bressanone 23 Principali caratteristiche dei MBA Fenomeni emergenti Path-dependence Inevitabilità del cambiamento

24 XI Scuola AiIG - 18 Settembre Bressanone 24 Variabili principali dei MBA Numero di agenti del sistema Rappresentazione dello spazio Rappresentazione del tempo Task/azioni svolte dagli agenti Complessità delle regole di comportamento Realismo cognitivo degli agenti Infrastruttura di comunicazione tra gli agenti Rappresentazione di network sociali

25 XI Scuola AiIG - 18 Settembre Bressanone 25 Classi di MBA Modelli di artificial life (AI) –molti agenti semplici –si muovono su una griglia –reagiscono in modo prestabilito –applicano regole semplici in base allo stato occupato Modelli ad agenti cognitivi (AC) –pochi agenti –basati su regole complesse –apprendimento reti neurali algoritmi genetici sistemi classificatori

26 XI Scuola AiIG - 18 Settembre Bressanone 26 Esempio di agenti: agenti senza mente Agenti di tipo reattivo –modello mentale nessuna rappresentazione interna –regole di comportamento del tipo Condizione - Azione

27 XI Scuola AiIG - 18 Settembre Bressanone 27 Esempio di agenti: agenti con mente Agenti di tipo BDI (Rao e Georgeff, 1991) –modello mentale Belief Desire Intention (BDI) –belief = conoscenza del mondo –desire = obiettivi di breve termine –intention = piani per raggiungere gli obiettivi memoria sociale relativa al comportamento degli altri agenti –regole di comportamento capacità di apprendere e ragionare

28 XI Scuola AiIG - 18 Settembre Bressanone 28 Tassonomia dellambiente Ambiente non strutturato –assenza di regole e/o istituzioni Ambiente strutturato –presenza di regole e/o istituzioni –es.: la borsa

29 XI Scuola AiIG - 18 Settembre Bressanone 29 Tassonomia dei MBA Agenti senza mente operanti in ambiente non strutturato Agenti senza mente operanti in ambiente strutturato Agenti con mente operanti in ambiente non strutturato Agenti con mente operanti in ambiente strutturato

30 XI Scuola AiIG - 18 Settembre Bressanone 30 Approcci a confronto Simulazione ad agenti modella il comportamento specifico di ciascun individuo focus sulle entità del sistema struttura del sistema emerge spontaneamente per effetto dellinterazione tra gli agenti razionalità limitata degli individui studio dellevoluzione del sistema nel tempo Simulazione tradizionale modello di tipo matematico basato sulle caratteristiche medie della popolazione focus su equazioni/variabili simulazione dei cambiamenti nelle caratteristiche medie simulazione della struttura imposta dal programmatore razionalità illimitata degli individui studio del sistema allequilibrio

31 XI Scuola AiIG - 18 Settembre Bressanone 31 Quando usare i MBA Sistemi di tipo localizzato e distribuito e dominati da decisioni di tipo discreto Sistemi così complessi che anche una semplice descrizione coinvolge un grande numero di variabili Importanti non linearità nei processi Variabili che interagiscono in modi multipli Interazioni complesse tra tre o più variabili

32 XI Scuola AiIG - 18 Settembre Bressanone 32 Svantaggi dei MBA Scarsa replicabilità dei risultati –validazione del modello Numerosi software assenza di uno standard –numero di agenti da trattare –memoria occupata –simulazione onerosa in termini di tempo –raccolta dei dati durante la simulazione Necessità di conoscere il linguaggio di programmazione –programmazione ad oggetti Produzione di artefatti –emergenza imposta dal programmatore

33 XI Scuola AiIG - 18 Settembre Bressanone 33 Fasi di sviluppo della simulazione basata su agenti Ing. Ilaria Giannoccaro

34 XI Scuola AiIG - 18 Settembre Bressanone 34 Fasi di creazione di un MBA Definizione del problema Sviluppo del modello concettuale Programmazione del modello Analisi dei risultati Validazione

35 XI Scuola AiIG - 18 Settembre Bressanone 35 Definizione del problema Sviluppare lidea o la teoria del problema Identificare le domande chiave –quale output si vuole ottenere? –cosa si vuole che vari durante la simulazione? –qual è il piano degli esperimenti migliore? Specificare le ipotesi Fare una lista delle assunzioni rilevanti Definire le prestazioni da misurare per osservare i comportamenti emergenti

36 XI Scuola AiIG - 18 Settembre Bressanone 36 Sviluppo del modello concettuale Codificare il sistema reale in un MBA –agenti proprietà –statiche e dinamiche architettura –modello mentale –regole di comportamento –ambiente strutturato –agenti dellambiente –regole di funzionamento –interazioni agente-agente e agente-ambiente architettura di comunicazione network sociali –eventi della simulazione

37 XI Scuola AiIG - 18 Settembre Bressanone 37 Modelli ad agenti BDI Scelta del livello di dettaglio KISS * Veridicità Automi cellulari * Keep it simple, stupid (Axelrod, 1997) Uso Theory bulding Mondi virtuali

38 XI Scuola AiIG - 18 Settembre Bressanone 38 Programmazione del modello Quale linguaggio di programmazione usare? –software basati su linguaggi orientati agli oggetti –ambiente di simulazione Criteri di validità di un linguaggio di programmazione –validità interna il programma sviluppato implementa correttamente il modello concettuale –validità esterna il programma sviluppato rappresenta correttamente il mondo reale –facilità duso –estensione del linguaggio a usi differenti

39 XI Scuola AiIG - 18 Settembre Bressanone 39 Software per SBA Swarm –http:\www.swarm.org kkk Repast –http://repast.sourceforge.net Ascape –http://www.brook.edu/ dybdocroot/es/dynamics/ models/ascape/ReadMe.html StarLogo –http://education.mit.edu/ starlogo NetLog –http://ccl.northwestern.edu/ netlogo AgentSheets –http://agentsheets.com/ Cormas –http://cormas.cirad.fr/ index eng.htm llllll AgentBuilder –http:\www.agentbuilder.com StarLogo

40 XI Scuola AiIG - 18 Settembre Bressanone 40 Analisi dei risultati Analisi della storia e dellevoluzione del sistema (path dependence) –prospettiva temporale –prospettiva del singolo agente –prospettiva globale del sistema Analisi statistiche sui dati –analisi di regressione –ANOVA

41 XI Scuola AiIG - 18 Settembre Bressanone 41 Validazione Analisi di sensibilità –misurare gli output che si ottengono con piccole variazioni degli input Validità teorica –il modello è unadeguata concettualizzazione della realtà panel di esperti Validità esterna –i risultati della simulazione sono in accordo con i dati osservati nella realtà Docking –verificare lequivalenza tra due modelli

42 XI Scuola AiIG - 18 Settembre Bressanone 42 Principali modelli usati per il docking Il gioco della vita di Convey (1970) –(si veda Poundstone, 1995) Garbage Can Model of Organizations di Cohen, March e Olsen (1972) Evoluzione delle strategie del Dilemma del prigioniero usando gli algoritmi genetici (Axelrod, 1987) Il modello NK di Kauffman (1995)

43 XI Scuola AiIG - 18 Settembre Bressanone 43 Discussione di un esempio Ing. Ilaria Giannoccaro

44 XI Scuola AiIG - 18 Settembre Bressanone 44 Sugarscape (Epstein e Axtell, 1996)

45 XI Scuola AiIG - 18 Settembre Bressanone 45 Obiettivo della simulazione Esplorare un mondo popolato da agenti che si muovono alla ricerca di cibo per sopravvivere Studiare leffetto delle condizioni ambientali sulla migrazione delle popolazioni, sulla formazione di gruppi sociali e su altre dinamiche di natura sociale Complessità crescente degli scenari –riproduzione –eredità e trasmissione culturale –scambi commerciali

46 XI Scuola AiIG - 18 Settembre Bressanone 46 Gli agenti Obiettivo –sopravvivenza Patrimonio genetico (caratteristiche statiche) riserva di risorse congenita capacità della vista consumo energetico per il metabolismo (longevità) Caratteristiche dinamiche posizione sulla griglia (x,y) intensità del colore (gradazioni di rosso) benessere o riserva evolutiva (età ) Regole di comportamento semplici

47 XI Scuola AiIG - 18 Settembre Bressanone 47 Regole degli agenti Vedere le celle adiacenti –direzione nord, sud, ovest, est –raggio di visione = funzione della vista Scegliere la nuova posizione –cella non occupata –cella contenente il maggiore quantitativo di cibo –cella più vicina Muoversi verso la cella scelta Aggiornare il livello di cibo a –a(t) = a(t-1) + r - m r = quantitativo di cibo della cella m = tasso metabolico –se a 0 lagente muore

48 XI Scuola AiIG - 18 Settembre Bressanone 48 Movimenti dellagente

49 XI Scuola AiIG - 18 Settembre Bressanone 49 Morte e nascita di nuovi agenti (M&N) Morte –per vecchiaia età dellagente = età massima Nascita –quando un agente muore per vecchiaia è immediatamente sostituito da un agente giovane (età = 0) e longevità scelta casualmente in un dato range

50 XI Scuola AiIG - 18 Settembre Bressanone 50 Lambiente Forma toroidale –griglia di dimensioni 50 x 50 costituita da celle Cella ( x, y) –livello corrente di zucchero (da 0 a 4) –capacità massima di zucchero –occupata o meno da un agente Distribuzione di zucchero nello spazio –valore assegnato in modo random tra una quantità massima e minima –distribuzione non uniforme 2 picchi che si trovano a nord-est e sud-ovest

51 XI Scuola AiIG - 18 Settembre Bressanone 51 Regole dellambiente Riproduzione di zucchero –istantanea (G ) –si incrementa sino alla capacità massima in un intervallo di tempo t (G 1 ) –si incrementa ad un tasso ad ogni istante di tempo (G )

52 XI Scuola AiIG - 18 Settembre Bressanone 52 Risultati della simulazione (1/2) Modello (G /G1,m ) –addensamento degli agenti verso le regioni più ricche –formazione di due gruppi Modello (G1, m) –convergenza della popolazione verso un valore asintotico numero di individui che lambiente può sopportare

53 XI Scuola AiIG - 18 Settembre Bressanone 53 Risultati della simulazione (2/2) Modello (G1, m, M&N) –distribuzione finale di ricchezza fortemente disomogena –lambiente seleziona gli agenti con vista migliore e metabolismo più basso Distribuzione asimmetrica iniziale degli agenti –movimento in diagonale degli agenti non consentito a livello locale

54 XI Scuola AiIG - 18 Settembre Bressanone 54 Risultati di altri scenari Riproduzione sessuale, trasmissione culturale e saccheggio di cibo tra gli agenti –formazione di tribù e segregazioni culturali Introduzione di un altro tipo di cibo (spezie) e differenze nel metabolismo spezie-zucchero –formazione di un mercato fondato su scambi bilaterali –prezzi oscillanti attorno ad un valore di equilibrio –condizioni non ottimali Diffusione di malattie infettive –studio dellinterazione fra epidemie e processi sociali

55 XI Scuola AiIG - 18 Settembre Bressanone 55 Prospettive di ricerca per lOM Ing. Ilaria Giannoccaro

56 XI Scuola AiIG - 18 Settembre Bressanone 56 Uso della simulazione nellOM Survey dal (Pannirselvam et al., 1999) –Decision Sciences –IIE Transactions –International Journal of Operations and Production Management –International Journal of Production Research –Journal of Operations Management –Management Science –Production and Operations Management Journal

57 XI Scuola AiIG - 18 Settembre Bressanone 57 Modelli matematici/statistici 41% Simulazione 18% Ricerca empirica 18% Modelli concettuali/teorici 10% Modelli ibridi 13% Modelli matematici/statistici Simulazione Ricerca empirica Modelli concettuali/teorici Modelli ibridi Metodologie di ricerca in OM ( ) (Fonte: Pannirselvam et al., 1999)

58 XI Scuola AiIG - 18 Settembre Bressanone 58 Aree di applicazione 45% 17% 4% 9% 1% 11% 2% 1% 2% 1% 3% 0% 1% 0% 5%10%15%20%25%30%35%40%45%50% Scheduling Inventory control Quality Process Design Strategy Facility Layout Distribution Services Capacity planning Maintenance Purchasing Project Management Facility Location Forecasting Aggregate planning Work Measurement Quality work life Focus su problemi di tipo operativo

59 XI Scuola AiIG - 18 Settembre Bressanone 59 Prospettive per lOM Teoria sui sistemi di produzione come sistemi adattativi complessi –supply network (Choi et al., 2001) –distretti industriali (Albino et al., 2003) –impresa (Terna, 2002) Linguaggio di programmazione condiviso e user-friendly –ambiente di sviluppo degli agenti –ambiente di simulazione –tool di analisi dei risultati

60 XI Scuola AiIG - 18 Settembre Bressanone 60 Aree di approfondimento Problemi di natura strategica e tattica Progettazione di sistemi avanzati di produzione flessibile Pianificazione e controllo dei sistemi di produzione distribuiti Integrazione funzionale Business Process Re-engineering Commercio elettronico Supply chain management –analisi delleffetto bullwhip –meccanismi di coordinamento di tipo decentrato –modelli evoluti di cooperazione cliente/fornitore –organizzazioni virtuali

61 XI Scuola AiIG - 18 Settembre Bressanone 61 Bibliografia su SBA nellOM (1/3) Albino V., Carbonara N., Giannoccaro I., 2003, Coordination mechanisms based on cooperation and competition within Industrial Districts: an agent-based computational approach, Journal of Artificial Society and Social Simulation, forthcoming. Barbuceanu, M., Teigen, R., Fox, M.S., 1997, Agent-based design and simulation of supply chain systems, Proceedings of the WETICE, IEEE Computer Society Press, Cantamessa, M., 1997, Agent-based modeling and management manufacturing systems, Computers in Industry, Vol 34, Ebben, M.J.R., de Boer, L., Pop Sitar C.E, 2002, Multi-agent Simulation of Purchasing Activities in Organizations, Proc, of the 2002 Winter Simulation Conference, Fox, M., Barbuceanu, M., Teigen R., 2000, Agent-oriented Supply Chain Management, The International Journal of Flexible Manufacturing Systems, Vol. 12, 165–188

62 XI Scuola AiIG - 18 Settembre Bressanone 62 Bibliografia su SBA nellOM (2/3) Lin, F., Shaw, M.J., 1998, Reengineering the order fulfillment process in supply chain networks, The International Journal of Flexible Manufacturing Systems, Vol. 10, Nissen, M., 2001, Agent based SC intergration, Information Technology and Management, Vol. 2, Swaminathan, J. M., Smith, S. F., Sadeh, N. M., 1998, Modeling Supply Chain Dynamics: A Multiagent Approach, Decision Science s, Vol. 29, No.3, Parunak, H. V. D., 1998, The DASCh Experience: How to Model a Supply Chain. In Proceedings of Second International Conference on Complex System s. Parunak, H. V. D., Savit, R., Riolo, R. L., 1998, Agent-Based Modeling vs. Equation-Based Modeling: A Case Study and Users' Guide, In Proceedings of Workshop on Multi-agent systems and Agent-based Simulation (MABS'98 ), Springer, Available at

63 XI Scuola AiIG - 18 Settembre Bressanone 63 Bibliografia su SBA nellOM (3/3) Schlueter-Langdon, C., Bruhn, P., Shaw, M.J., 2000, Online Supply Chain Modeling and Simulation, In F. Luna and B. Stefansson (eds.), Economic Simulations in Swarm: Agent-Based Modeling and Object Oriented Programming, Dordrecht and London, Kluwer Academic, Strader, T. J., Lin, F.R., Shaw, M. J., 1998, Simulation of Order Fulfillment in Divergent Assembly Supply Chains. Journal of Artificial Societies and Social Simulatio n, 1(2),1998. Available at Terna, P., 2002a, Simulazione ad agenti in contesti di impresa, Sistemi intelligenti, Vol. 1, IV, Terna, P., 2002b, La simulazione come strumento di indagine per leconomia, Workshop su Scienze cognitive ed Economia, 21 settembre, Rovereto.

64 XI Scuola AiIG - 18 Settembre Bressanone 64 Bibliografia della lezione (1/5) Arthur W.B., Durlauf, S.N., and Lane D.A., 1997, The Economy as an Evolving Complex System II, Addison-Wesley, Reading MA. Axelrod, R., 1987, The evolution of strategies in the iterated Prisoners Dilemma, In Genetic algorithms and simulated annealin g, Lawrence Davis (ed.), London: Pitman; Los Altos, CA: Morgan Kaufman, Axelrod, 1997, Advancing the Art of Simulation in the Social Sciences, R. Conte, R. Hegselmann, and P. Terna (Eds), Simulating Social Phenomena, Berlin, Springer. Axtell, R., 2000, Why Agents? On the varied motivations for agent computing in social sciences, Working paper No. 17, Center on Social and Economic Dynamics, The Brooking Institution, Washington, USA. Berends P., Romme, G., 1999, Simulation as a Research Tool in Management Studies, European Management Journal, Vol. 17, No. 6, Brazier, F.M.T., Dunin-Keplics, B., Jennings, N.R., Treur, J., 1995, Modeling Distributed industrial processes in a Multi-agent Framework, printed from

65 XI Scuola AiIG - 18 Settembre Bressanone 65 Bibliografia della lezione (2/5) Carley, K., 2001, Computational approach to Sociological Theorizing, IN J. Turner (Ed.) Handbook of Sociological Theory, ch. 4, 69-84, Kluwer Acadimic/Plenum Publishers, New York. Carley, K.M., Gasser, L., 2000, Computational Organizational Theory, in Weiss G. (ed.), Multiagent Systems. A modern approach to distributed artificial intelligence, The MIT Press, Cambridge (Massachusetts). Choi, K.J. Dooley, M. Rungtusanatham, 2001, Supply networks and complex adaptive systems: control versus emergence, Journal of Operations Management, Vol. 19, Cohen, M. D., March, J. G., Olsen, J., 1972, A garbage can theory of organizational choice, Administrative science quarterl y, Vol. 1 7, Davidsson, P., 2002, Agent Based Social Simulation: A computer science view, Journal of Journal of Artificial Society and Social Simulation, Vol. 5, No. 1. Epstein, M.E., Axtel,l R., 1996, Growing Artificial Societies: Social Science from the Bottom-up, Washington, Brookings Institution Press, Cambridge, MA, MIT Press

66 XI Scuola AiIG - 18 Settembre Bressanone 66 Bibliografia della lezione (3/5) Gell-Mann, M., 1994, The quark and the jaguar, Freeman & Co., New York. Gilbert, N., Troitzsch, K,G., 1999, Simulation for the Social Scientist, Open University Press. Goldspink, C., 2002, Methodological Implications of Complex Systems Approaches to Sociality: Simulation as a foundation for knowledge, Journal of Artificial Societies and Social Simulation, Vol. 5, No. 1, available at Gotts, N.M., Polhill, J.G., Law, A.N.R., 2003, Agent-based Simulation in the Study of Social Dilemmas, Artificial Intelligence Review, Vol. 19, Holland, J.H., 1995, Hidden Order: How Adaptation Builds Complexity, Addison-Welsey, Reading, MA. Holland, J.H., 2002, Complex Adaptive Systems and Spontaneous Emergence, in Curzio, A.Q., Fortis, M. (eds.), Complexity and Industrial Clusters, Physica-Verlag Heidelberg.

67 XI Scuola AiIG - 18 Settembre Bressanone 67 Bibliografia della lezione (4/5) Huhns, M.N., Stephens, L.M., 2000, Multiagent Systems and Societies of Agents, in Weiss G. (ed.), Multiagent Systems. A modern approach to distributed artificial intelligence, The MIT Press, Cambridge (Massachusetts). Kauffman, S.A., 1993, The Origins of Orders: Self-Organization and Selection in Evolution, Oxford University Press, New York/Oxford. Kauffman, S.A., 1995, At home in the Universe, Oxford and New York: Oxford University Press. McKelvey, B., 1999, Complexity theory in organization science: Seizing the promise or becoming a fad?, Emergence, Vol. 1, 3–32. Pannirselvam, G., P., Ferguson L.A., Ash R.C., Siferd S.P., 1999, Operations Management Research for the 1990s, Journal of Operations Management, Vol. 18, 95–112. Poundstone, W. (1985). The recursive universe. Chicago, IL: Contemporary Books. Rao, A. S., Georgeff, M. P., 1991, Modeling rational agents within a BDI architecture. In J. Allen, R. Fikes, and E. Sandewall (eds.), Proc. of the Int. Conf. on Principles of Knowledge Representation and Reasoning, San Mateo, CA: Kaufmann,

68 XI Scuola AiIG - 18 Settembre Bressanone 68 Bibliografia della lezione (5/5) Terna, P., 2001, Creating Artificial World: A note on Sugarscpae and Two comments, Journal of Artificial Society and Social Simulation, Vol. 4, No. 2. Terna, P., 2002a, Simulazione ad agenti in contesti di impresa, Sistemi intelligenti, Vol. 1, IV, Terna, P., 2002b, La simulazione come strumento di indagine per leconomia, workshop su Scienze cognitive ed Economia, 21 settembre, Rovereto. Tesfatsion, L., 2001, Agent-based computational Economics: Growing Economies from the Bottom-up, Artificial Life, Vol. 8, No. 1, 55-82, available at Wolfram, S., 2002, A New Kind of Science, Wolfram Media Inc. Edition. Weiss, G., 2000, Multiagent Systems. A modern approach to distributed artificial intelligence, The MIT Press, Cambridge (Massachusetts).

69 XI Scuola AiIG - 18 Settembre Bressanone 69 Siti web utili da consultare SWARM web site –http:\www.swarm.org SantaFe University web site –http:\www.santafe.edu Journal of Artificial Society and Social Simulation –www.soc.surrey.ac.uk/JASSS Agent-based Computational Economics –http:\ Syllabus of Readings for Articial Life and Agent-based Economics –http://www.econ.iastate.edu/tesfatsi/sylalife.htm Agent-based Economics and Artificial Life: A brief introduction –http://www.econ.iastate.edu/tesfatsi/getalife.htm Computational Analysis of Social and Organizational Systems –http://www.casos.ece.cmu.edu INFORMS College on Simulation –http://www.informs-cs.org/ Computer Simulation of Society –http://www.soc.surrey.ac.uk/research/simsoc/simsoc.html


Scaricare ppt "XI Scuola AiIG - 18 Settembre 2003 - Bressanone 1 Simulazione: I modelli basati su agenti autonomi Ing. Ilaria Giannoccaro Dipartimento di Ingegneria Meccanica."

Presentazioni simili


Annunci Google