La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Web Information Retrieval. Il World Wide Web Sviluppato da Tim Berners-Lee nel1990 al CERN per organizzare documenti di ricerca disponibili su Internet.

Presentazioni simili


Presentazione sul tema: "Web Information Retrieval. Il World Wide Web Sviluppato da Tim Berners-Lee nel1990 al CERN per organizzare documenti di ricerca disponibili su Internet."— Transcript della presentazione:

1 Web Information Retrieval

2 Il World Wide Web Sviluppato da Tim Berners-Lee nel1990 al CERN per organizzare documenti di ricerca disponibili su Internet. Combina lidea di scaricare documenti via FTP con lidea di ipertesti per collegare fra loro i docmenti Ha sviluppato il protocollo HTTP, il concetto di URLs, ed il primo web server.

3 Problemi per WEB IR Dati distribuiti: I documenti sono sparsi su milioni di server differenti Dati Volatili: Molti documenti appaiono e spariscono (così detti dead links). Enormi volumi di dati: Miliardi di documenti diversi Dati non strutturati e ridondanti: Non esiste una struttura uniforme, ci sono errori html, circa 30% di documenti duplicati. Qualità dei dati: Non ci sono controlli editoriali, le informazioni possono essere false, possono esserci errori, testi mal scritti.. Dati eterogenei: multimediali (immagini, video, suoni..) diversi linguaggi, diversi formati (pdf, ps..)

4 Numero di Web Servers

5 Numero di pagine Web

6 Numero di pagine Web indicizzate Assumendo circa 20KB per pagina, 1 miliardo di pagine sono circa 20 terabytes di dati. SearchEngineWatch, Aug. 15, 2001

7 Crescita delle pagine indicizzate GoogleGoogle elenca il numero di pagine correntemente indicizzate. SearchEngineWatch, Aug. 15, 2001

8 Struttura a grafo del Web Pagine con link in uscita Pagine con link in ingresso Pagine con link di ingresso e uscita

9 Ricerca sul Web Il Web Ind. commerciali Spider Indicizzatore Indici Search Utente

10 WWW Spiders /Crawlers Page Respository Modulo IR Modulo Indiciz- zazione Testo Struttura Link Controllo Spidering Utenti Query Ranked results

11 FASI Spidering/Crawling: esplorazione di una porzione del web Indicizzazione: generazione di indici che associno i documenti a dei puntatori, su tre basi: –struttura del documento, –contenuto, –posizione del documento nel grafo del web. Ranking: sulla base della query e degli indici, presentare gli indirizzi delle pagine ordinate per rilevanza

12 Web Search 1. Spidering (o Crawling)

13 Spiders (Robots/Bots/Crawlers) Sono programmi che attraversano la rete spedendo pagine nuove o aggiornate ad un server principale,e dove queste vengono indicizzate Uno Spider gira su macchine locali e spedisce richieste a server remoti Gli indici sono usati in maniera centralizzata per rispondere alle query degli utenti

14 Spiders (Robots/Bots/Crawlers) Si parte da un insieme pre-identificato di URL radice. Si seguono tutti i link a partire dalle radici alla ricerca di pagine addizionali. Alcuni sistemi consentono allutente di sottomettere pagine per lindicizzazione (o stabilire i nodi radice).

15 Spidering Web URLs navigate E analizzate Frontiera URLs Il Web nascosto pagine iniziali (seeds)

16 Questo semplice schema presenta complicazioni Non si può effetuare il crawling con una sola macchina, quindi tutte le fasi sono distribuite su threads Problemi: –Latenza e apiezza di banda varia sui server remoti –Quanto in profondità esplorare la gerachia di URL in un sito? –Pagine duplicate e siti mirror Pagine maliziose –Pagine spam –Spider traps

17 Uno schema meno semplice URLs crawled E analizzate Web nascosto Pagin e Seed frontiera Crawling thread

18 Fasi di crawling Seleziona una URL dalla frontiera Preleva il documento a quell URL Analizza il documento –Estrai i link ad altri documenti (URLs) Verifica se esistono pagine già analizzate –Se no, aggiungi gli indici Per ogni URL estratta –Controlla che superi opportuni URL test di filtraggio –Elimina duplicati Es., accetta i.edu, obbedisci ai robots.txt, etc. Quale?

19 Architettura WWW Fetch DNS Parse Già visto? Doc FPs Dup URL elim URL set URL Frontier URL filter robots filters

20 Spider Control Decide quali link i crawler debbano esplorare e quali ignorare Può usare dei feedback provenienti da usage patterns (analisi di comportamenti di utente) per guidare il processo di esplorazione

21 Strategie di ricerca Breadth-first Search

22 Strategie di Ricerca (2) Depth-first Search

23 Trade-Offs Breadth-first esplora uniformemente a partire dalla pagina(e) root, ma richiede la memorizzazione di tutti i nodi del livello precedente (è esponenziale nel fattore di profondità p). E il metodo standard. Depth-first richiede di memorizzare p volte il fattore di branching (lineare in p), ma si perde seguendo ununica traccia.

24 Algoritmo di Spidering Inizializza la coda Q con un set iniziale di URL note. Until Q vuota o si esauriscono i limiti di tempo o pagine memorizzabili: Estrai URL, L, dalla testa di Q. Se L non è una pagina HTML (.gif,.jpeg,.ps,.pdf,.ppt…) continua il ciclo. Se L già visitata, continua il ciclo. Scarica la pagina, P, di L. Se non è possibile scaricare P (e.g. 404 error, robot exclusion) continua ciclo. Indicizza P (cioè aggiungi rapp(P) allinverted inedex,oppure memorizza una copia cache). Analizza P per ottenere una nuova lista di links N. Appendi N in coda a Q.

25 Append:Strategie di queueing I nuovi link aggiunti come modificano la strategia di ricerca? FIFO (appendi alla coda di Q) determina una strategia di ricerca breadth-first. LIFO (aggiungi in testa a Q) determina una strategia di ricerca depth-first. Alcuni sistemi usano delle euristiche per collocare i nuovi link secondo priorità focused crawler tese a direzionare la ricerca verso pagine interessanti.

26 Strategie per Spider specializzati Ristretti a siti specifici. –Rimuove alcuni links da Q. Ristretti a directories specifici. –Rimuove i links non contenuti nel directory. Obbedisce a restrizioni imposte dai proprietari dei siti (robot exclusion).

27 Dettagli sulle tecniche di Spidering : 1. Estrazione dei Link (puntatori) Si devono identificare tutti i links contenuti in una pagina ed estrarre le relative URLs, per proseguire nellesplorazione. – Se esistono URL specificate con riferimento alla URL della pagina corrente, devono costruire un URL completo : – diventa – diventa

28 2. Esprimere i Link in formato canonico Variazioni equivalenti vengono normalizzate rimuovendo la slash finale –http://www.cs.utexas.edu/users/mooney Si rimuovono i riferimenti a pagine interne (refs) : –http://www.cs.utexas.edu/users/mooney/welcome.html#courses –http://www.cs.utexas.edu/users/mooney/welcome.html

29 3. Refresh: aggioramento delle pagine Il Web è dinamico: ci sono molte pagine nuove, pagine aggiornate, cancellate, riposizionate.. Periodicamente lo Spider deve verificare tutte le pagine indicizzate per aggiornamenti e cancellazioni : –Basta guardare le info di intestazione (es. META tags sullultimo aggiornamento) per verificare se la pagina è stata aggiornata, e ricaricarla se necessario. Tiene traccia delle pagine più dinamiche nel tempo, e controlla quelle in prevalenza. Aggiorna e verifica con preferenza le pagine più popolari.

30 4. Robot Exclusion Alcuni siti Web o pagine possono specificare che gli spiders/robot non accedano né indicizzino certe aree. Due componenti: –Robots Exclusion Protocol: E un protocollo che vieta laccesso da direttori specificati allintero sito. Robots META Tag: Etichetta documenti specifici per evitarne lindicizzazione o lesplorazione.

31 Robots Exclusion Protocol Gli amministratori dei siti mettono un file robots.txt alla radice del web directory dellhost. –http://www.ebay.com/robots.txthttp://www.ebay.com/robots.txt –http://www.cnn.com/robots.txthttp://www.cnn.com/robots.txt Il file contiene una lista di directories proibite per un dato robot, o agente di utente. –Exclude all robots from the entire site: User-agent: * Disallow: /

32 Robot Exclusion Protocol Examples Escludere directories: User-agent: * Disallow: /tmp/ Disallow: /cgi-bin/ Disallow: /users/paranoid/ Escludere uno specifico robot: User-agent: GoogleBot Disallow: / Consentire luso solo ad uno specifico robot: User-agent: GoogleBot Disallow: User-agent: * Disallow: /

33 5. Multi-Threaded Spidering Il collo di bottiglia consiste nel ritardo di rete per scaricare singole pagine. E preferibile seguire molti fili della rete in parallelo ognuno dei quali richiede una pagina da diversi host. Il precedente spider di Google aveva molti crawlers coordinati, ognuno con 300 thread, complessivamente capaci di scaricare più di 100 pagine al secondo.

34 6. Selezione delle pagine Quali pagine scaricare?? (non tutto il web!!) Metriche di importanza: –Interest-driven (spiders specializzati) –Popularity driven –Location driven

35 Sommario (Spiders) Strategia di ricerca Strategia di aggiornamento (refresh) Minimizzazione del carico su altre organizzazioni (robot exclusion) Selezione delle pagine

36 2. Indicizzazione

37 Modalità per indicizzare le pagine sul Web Per ogni pagina identificata dallo Spider va creato un indice. Tre metodi (non esclusivi) –Si usano dei directories, che classificano le pagine Web per argomento –Si indicizza ogni documento esplorato dallo Spider come full text (flat o strutturato) –Si tiene conto della struttura ipertestuale del Web, cioè degli hyperlinks

38 1. Creazione di Directories: 1.1 Classificazione manuale Yahoo usa editors umani per generare un directory gerachico di pagine web. –http://www.yahoo.com/http://www.yahoo.com/ Open Directory Project è un progetto simile, basato sul lavoro distribuito di editors volontari (net-citizens provide the collective brain). E utilizzato da molti motori di ricerca. Il progetto è stato avviato da Netscape. –http://www.dmoz.org/http://www.dmoz.org/

39

40

41

42

43 1.2 Classificazione automatica La classificazione manuale dei documenti sul web ad opera dei gestori di portali o motori di ricerca richiede molto tempo e molta forza-lavoro, è soggettiva, e soggetta a errori. I metodi automatici di classificazione dei testi possono essere usati per alleviare questo lavoro. Questi metodi si basano su tecniche di machine learning.

44 1.3 Gerarchizzazione automatica di documenti Lo sviluppo di tassonomie è un processo complesso, richiede tempo, è soggettivo, produce errori. Esistono metodi automatici (Hierarchical Agglomerative Clustering (HAC) ) per ottenere automaticamente una strutturazione gerarchica.

45 Metodi di classificazione automatica Sport C n Politica C 1 Economia C Wonderfu l Totti Yesterday match Berlusconi acquires Inzaghi before elections Bush declare s war

46 Classificazione Automatica (2) Dato: –Un insieme di categorie: –Un insieme T di documenti d, definisci f : T 2 C VSM (Vector Space Model) –I documenti sono rappresentati come vettori (modello vettoriale). –Sia i documenti che le categorie sono vettori. –d è assegnato a se

47 Esempio Berlusconi Bush Totti Bush declares war. Berlusconi gives support Wonderful Totti in the yesterday match against Berlusconis Milan Berlusconi acquires Inzaghi before elections d 1 : Politica d1d1 d2d2 d3d3 C1C1 C 1 : Politica d 2 : Sportd 3 :Economia C2C2 C 2 : Sport

48 , il peso di wi in dj –Ad esempio (ma esistono altri schemi di pesatura) TF * IDF, il peso di wi in C k :, i documenti di addestramento per Un documento d è assegnato alla classe C k se: Il Classificatore di Rocchio

49 Iperpiano di seperazione Altri metodi di classificazione: SVM Support Vectors Tk

50 1.Classificazione 1. Classificazione 2. Creazione degli indici 2.1 Full text 2.2 Usando informazioni aggiuntive sul testo

51 Creazione automatica di Indici nel Web IR Molti sistemi usano varianti dell inverted file Ad ogni parola o keyword viene associato l insieme dei puntatori alle pagine che contengono la parola Eliminazione di stopwords, punteggiatura.. Usualmente si associa anche una breve descrizione del contenuto della pagina (per mostrarlo all utente)

52 Creazione automatica di Indici (2) –Poiché occorrono circa 500 bytes per memorizzare linformazione relativa ad ogni pagina, occorrono circa 50 Gb per mantenere le informazioni relative a 100 milioni di pagine !! –Tecniche di compressione possono consentire di ridurre la taglia di un inverted file di circa il 30% (dunque bastano 15 Gb per 100 milioni di pagine)

53 Creazione automatica di Indici (3) Alcuni inverted files puntano all occorrenza di una parola nel testo (non nel documento), ma la tecnica è troppo costosa in termini di memoria. Se si possiede un puntatore di posizione dentro la pagina, è possibile fare proximity search cio è cercare frasi (parole fra loro contigue). Qualche motore di ricerca consente proximity search, ma le tecniche non sono note interamente.

54 Creazione automatica di Indici (4) Una soluzione intermedia consiste nel puntare a blocchi anzich é a singole occorrenze nel documento. Questo riduce la taglia dei puntatori e velocizza la ricerca.

55 Metodi avanzati: Indicizzazione usando il testo nelle ancore Lo Spider analizza il testo nelle ancore (between and ) di ogni link seguito. Il testo nelle ancore di solito è molto informativo sul contenuto del documento cui punta. Si aggiunge il testo contenuto nellancora alla rappresentazione del contenuto della pagina destinazione (keywords). Questo metodo è usato da Google: – Evil Empire – IBM

56 Indicizzazione usando il testo nelle ancore (cont) E particolarmente utile quando il contenuto descrittivo nelle pagine destinazione è nascosto nei logo delle immagini piuttosto che in testi accessibili. Spesso non è affatto utile: –click here Migliora la descrizione del contenuto di pagine popolari con molti link entranti, ed aumenta la recall di queste pagine. Si può anche assegnare un peso maggiore al testo contenuto nelle ancore.

57 1. Classificazione 2. Creazione degli indici 2.1 Full text 2.2 Usando informazioni aggiuntive sul testo 3. Ranking 3.1 Ranking sulla base del contenuto 3.2 Ranking sulla base della struttura ipertestuale

58 Ranking I metodi di ranking usati dai motori di ricerca sono top- secret I metodi più usati sono il modello vettoriale e booleano La maggioranza dei motori utilizzano per il ranking anche gli hyperlinks. Le pagine risposta p i vengono valutate (ed il loro numero viene esteso) sulla base del numero di connessioni da e verso p i.

59 Link Analysis

60 Primi metodi di link analysis Gli Hyperlinks contengono informazioni che sussumono un giudizio sulla pagina Più links entrano in un sito, più importante è il giudizio Assunzioni La visibilità (hubness) di un sito si misura mediante il numero di siti che puntano ad esso La luminosità (authority) di un sito è il numero di altri siti che esso punta Limite: non cattura limportanza relativa dei siti parenti (cioè ad esso collegati )

61 HITS - Kleinbergs Algorithm HITS – Hypertext Induced Topic Selection Per ogni vertice v V in un sottografo di interesse: Un sito è autorevole se riceve molte citazioni. Le citazioni da parte di siti importanti pesano di più di quelle da parte di siti meno importanti. Un buon hub è un sito che è collegato con molti siti autorevoli a(v) - l authority di v h(v) - la hubness di v

62 Authority e Hubness a(1) = h(2) + h(3) + h(4) h(1) = a(5) + a(6) + a(7)

63 Il grafo dei collegamenti I documenti sono visti come i nodi di un grafo Gli hyperlinks sono visti come archi diretti Gli archi possono avere pesi Si costruisce in tal modo il grafo dellintero web G web = (V(G web ), E(G web )) –E(G web ) V(G web ) V(G web ) L: Matrice delle adiacenze

64 Due metodi di ranking sono i più diffusi: HITS e Page Rank Basati sulla link analysis: –HITS (Hypertext Induced Topic Selection) (Kleinberg, 1997) Obiettivo: ottenere il ranking di una pagina per ogni specifica query (dinamico) –PageRank (Brin and Page, 1998) Obiettivo : ottenere un ranking di tutte le pagine del web indipendentemente dalle query (statico)

65 HITS Hubs and Authorities (1) Si estrae il set P di pagine che includono le keywords di Q Si include il set delle back pages B = { b : (b, p) E(G web ) } Si include anche il set delle forward pages F = { f : (p, f) E(G web ) } Si definisce: –V Q = P B F –E Q = E web (B P P F) –G Q = (V Q, E Q ) p1p1 p |P| p2p2 search results b1b1 b |B| b2b f1f1 f |F| f2f back set forward set Obiettivo : ottenere un ranking delle pagine per una particolare query Q = {w 1, …, w n }

66 Hubs and Authorities (2) Per una specifica query si vuole trovare: –Le authorities su quellargomento o topic (dove cioè le informazioni richieste effettivamente sono contenute) –I siti hub, che puntano alle migliori pagine su quel topic le authorities più importanti avranno molti siti che puntano ad esse Gli hubs più importanti avranno molti puntatori Assunzione: le migliori authorities sono puntate dai migliori hubs e viceversa

67 Hubs and Authorities (3) Partendo dal grafo G Q, e dalla matrice di adiacenza L, si definiscono due vettori a = (a 1, a 2, …, a n ) T e h = (h 1, h 2, …, h n ) T, |V Q | = n, tali che: –a i è il grado di autorità di v i V(G Q ) –h i è il grado di di hubness di v i V(G Q )

68 The HITS algorithm (Kleinberg, 1998) h (0) := (1, 1, …, 1) T k := 1 Fino alla convergenza, esegui: –a (k) := L T h (k-1) (aggiorna a) –h (k) := L a (k) (aggiorna h) –a (k) := a (k) /||a (k) || and h (k) := h (k) /||h (k) || (normalizzazione) Si possono riscrivere le due assegnazioni nei termini degli stessi vettori dell iterazione precedente : –a (k) := L T h (k-1) = L T L a (k-1) –h (k) := L a (k) = L L T h (k-1)

69 Significato delle matrici L L T e L T L L è la adjacency matrix di G Q L T L è detta authority matrix: ij k A ij è il numero co-citazioni, cioè Il numero di nodi che puntano sia a i che j..vi ricorda qualcosa di già visto???????

70 Significato delle matrici L L T e L T L L è la adjacency matrix di G Q L T L è detta authority matrix L L T è detta hubness matrix: ij k H ij è il numero di co-referenze, cioè Il numero di nodi puntati sia da i che j j i

71 Significato delle matrici L L T e L T L L è la adjacency matrix di G Q L T L è detta authority matrix L L T è detta hubness matrix Le matrici sono: –Simmetriche (a ij = a ji i,j = 1, …, n) –Positive semidefinite ( i, i 0, i = 1, …, n)

72 Il Power Method (1) Ricordate il passo iterativo : –a (k) := L T L a (k-1) –h (k) := L L T h (k-1) Lalgoritmo iterativo per calcolare i vettori HITS a e h è il power method per calcolare l eigenvector dominante (cioè l autovettore che corrisponde all autovalore di valore massimo) di L T L e LL T, rispettivamente (riguardatevi la lezione su LSI!!)

73 Il Power Method Converge al Dominant Eigenvector 1, 2, …, k sono gli n eigenvalues di una matrice A (=LL T ) e | 1 | > | 2 | … | k | x 1, …, x k sono gli eigenvectors associati e linearmente indipendenti (indipendenza lineare : 1 x x 2 +…+ k x k =0 iff 1 =…= k =0) Un generico vettore v 0 (h (0) o a (0) ) può essere scritto come: –v 0 = 1 x x 2 +…+ k x k Quindi: –v 1 =Av 0 = 1 Ax Ax 2 +…+ k Ax k = 1 1 x x 2 +…+ k k x k = – 1 [ 1 x ( 2 / 1 )x 2 +…+ k ( k / 1 )x k ] E in generale: –v m =Av m-1 =A m v 0 = 1 A m x A m x 2 +…+ k A m x k = 1 1 m x m x 2 +…+ k k m x k = 1 m [ 1 x ( 2 / 1 ) m x 2 +…+ k ( k / 1 ) m x k ] Poichè | i / 1 | < 1, i = 2, 3, …, n, abbiamo: a (k) := L T L a (k-1) =A a (k-1)

74 Convergenza del Power Method (2) Perciò, con m grande: Osservazione: la velocità di convergenza dipende dal rapporto | 1 / 2 |

75 HITS: Esempio (1)

76 HITS: Esempio (2) h0h0 a1a1 a1a1 h1h authorities hubs –a (1) := L T h (0) –h (0) := L a (0)

77 HITS: Esempio (3) h1h1 a2a2 a2a2 h2h authorities hubs –a (2) := L T h (1) –h (1) := L a (1)

78 HITS: Esempio (4) h2h2 a3a3 a3a3 h3h authorities hubs –a (3) := L T h (2) –h (3) := L a (3)

79 HITS: Esempio (5) h3h3 a4a4 a4a4 h4h authorities hubs –a (4) := L T h (3) –h (4) := L a (4)

80 Strategia di Ranking L authority vector è il ranking delle pagine in G Q Cè un rischio di topic drift (slittamento del topic) –Le pagine Back e Forward possono essere più generali –Cè il rischio di recuperare pagine troppo generiche rispetto alla query Q Inoltre, è possibile influenzare i punteggi di hubness –Aggiungere degli archi in una pagina ne aumenta il valore di hubness, il quale a sua volta aumenta lautorithy delle pagine puntate, portando ad un effetto di SPAM!!

81 PageRank Introdotto da Brin & Page (1998) –Il peso dipende dal rank dei nodi parenti P(a) è la probabilità che un navigatore casuale (random walker) raggiunga la pagina a C(a i ) numero complessivo di (out) links della pagina a i D è il damping factor e modella la probabilità che ilrandom walker smetta di navigare Differenza rispetto a HITS –HITS prende i pesi di Hubness & Authority –Page Rank è proporzionale al rank dei suoi nodi parenti ma inversamente proporzionale al outdegree dei suoi parenti

82 PageRank è usato da Google The Anatomy of a Large-Scale Hypertextual Web Search Engine. Brin, S. & Page, L (1998).

83 T1 PR=0.5 T2 PR=0.3 T3 PR=0.1 A PR(A)=(1-d) + d*(PR(T1)/C(T1) + PR(T2)/C(T2) + PR(T3)/C(T3)) = *(0.5/ /4+ 0.1/5)

84 Notazione matriciale Matrice delle adiacenze A = * Il calcolo di Pagerank corrisponde al calcolo delleigenvector dominante della matrice delle adiacenze normalizzata del web (a meno del parametro d si ha )

85 Come si calcola pageRank? Si parte da pesi casuali e si itera il procedimento Es: AB d = 0.85 PR(A) = (1 – d) + d(PR(B)/1) PR(B) = (1 – d) + d(PR(A)/1) Partiamo con P=1 PR(A)= * 1= 1 PR(B)= ,85*1=1 già converge!! Partiamo con P=0 PR(A)= * 0= 0.15 PR(B)= ,85*0.15= PR(A)= * = PR(B)= PR(A)= PR(B)= Tende a 1!!

86 Problemi Problema del Rank Sink –In generale, molte pagine web non hanno inlinks/outlinks E.g. nessun parente rank 0 A T converge a una matrice la cui ultima colonna contiene tutti zero nessun figlio nessuna soluzione A T converge ad una matrice di zeri

87 Problema dei dangling links I nodi senza puntatori si dicono dangling links Spesso sono pagine non ancora scaricate dallo spider Poiché non modificano il ranking di nessuna pagina direttamente (ma modificano il modello, perché non è chiaro come distribuire il loro peso, né qunati di questi nodo ci siano sul web), queste vengono semplicemente eliminate dal calcolo di Pagerank (per poi essere reinserite nel modello)


Scaricare ppt "Web Information Retrieval. Il World Wide Web Sviluppato da Tim Berners-Lee nel1990 al CERN per organizzare documenti di ricerca disponibili su Internet."

Presentazioni simili


Annunci Google