Osserva attentamente il grafico della funzione seguente e sviluppane le richieste in modo esaustivo. Vai direttamente all’esercizio:
Individua, dall’andamento del grafico, il dominio della funzione. Clicca qui per dare ancora un’occhiata al grafico! Df: A X ϵ R – {-1,1} Abbiamo due interruzioni, espresse da due discontinuità di seconda specie.
Descrivi perché la funzione è pari. Clicca qui per dare ancora un’occhiata al grafico! APPROFONDIMENTO Una funzione si dice pari se cambiando di segno la x, la funzione non cambia di segno in formula:f ( - x ) = f ( x ) In pratica significa che una funzione pari e' simmetrica rispetto all'asse y, cioè i valori a destra dell'origine sono uguali a quelli a sinistra. Nel nostro caso, la funzione è pari perché la curva è simmetrica rispetto all’asse y. Infatti f(x) = f(-x)
Individua gli asintoti verticali, orizzontali o obliqui della curva. Clicca qui per dare ancora un’occhiata al grafico! Abbiamo un asintoto orizzontale in y=2 Perché la curva all’ infinito tende ad u n valore finito. Gli asintoti verticali li abbiamo in -1 e 1 poiché ci sono due discontinuità di seconda specie e perché la curva ad un valore finito tende ad infinito. Data la presenza dell’asintoto orizzontale sia sinistro che destro, è esclusa l’esistenza dell’asintoto obliquo
Spiega perché la funzione rappresentata dalla curva in figura non è invertibile. Clicca qui per dare ancora un’occhiata al grafico! APPROFONDIMENTO: Una funzione è invertibile, se e solo se è sia suriettiva che iniettiva Affinché la curva sia invertibile, deve essere monotona, ossia avere un andamento costante (o sempre crescente o sempre decrescente); deve inoltre essere continua. Nel nostro caso non è continua né monotona. P.S. Ad ogni modo una funzione se è pari non è invertibile
Clicca qui per dare ancora un’occhiata al grafico! Ricava il dominio della funzione y = ln f(x). Sappiamo che : Il logaritmo di una funzione esiste solo se è positiva Dunque il dominio della funzione y = ln f(x) è: F(x) >0 vero! x >0 – {1} A
Individua gli asintoti verticali della funzione y = l n f(x) Clicca qui per dare ancora un’occhiata al grafico! APPROFONDIMENTO: gli asintoti verticali si hanno quando, all’avvicinarsi della x ad un valore finito, il valore della y cresce all’infinito. Poiché il valore infinito è solo una convenzione, ne deriva che la funzione avrà valore infinito dove la x non è definita. Quindi per trovare gli asintoti verticali devo trovare quei valori della x per cui la funzione vale infinito. dove si annulla la funzione il logaritmo diviene infinito. In ± 3/2 la funzione si annulla quindi : X=± 3/2 asintoti verticali per la funzione y = ln f(x)
Clicca qui per dare ancora un’occhiata al grafico! Determina la positività della funzione y = ln f(x). Calcolato il dominio e gli asintoti verticali della funzione y = ln f(x) non mi resta che accertarne la positività. APPROFONDIMENTO: La funzione ln è: Positiva per argomenti > 1; Negati per argomenti compresi fra 0 ed 1; Vale 0 se per argomenti uguali 1. Il ln è positivo se la base e l’argomento sono entrambi >1. Se immaginiamo di tracciare una retta orizzontale di equazione y=1, troviamo i punti di contatto con la curva che proiettati sull’asse x e posti >0 ci garantiscono la positività della funzione y = ln f(x)
Clicca qui per dare ancora un’occhiata al grafico! Si tratta di un’equazione fratta poiché il dominio esclude due valori (1,-1). Essendo simmetrica rispetto all’asse y manca del termine di grado dispari. Poiché la curva tocca l’asse x in ± 3/2, queste saranno le soluzioni che annullano il numeratore (gli zeri), di conseguenza il numeratore è (2x+3)(2x-3). Riguardo il denominatore questo si annulla in +1 e -1, quindi è 2x²-2. La curva ha un asintoto orizzontale in y=2, Secondo la teoria degli asintoti il lim ᵪ͢͢͢͢ f(x)=2. Sostituendo infinito ad x nella funzione ed essendo il grado del numeratore uguale a quello del denominatore, il rapporto tra i coefficienti di x² deve essere 2. Dunque: Scrivi l’equazione della funzione y = f(x), di cui è rappresentato il grafico, e motiva la tua scelta. 4x²-9 2x²-2