Insiemi Operazioni fondamentali con gli insiemi.

Slides:



Advertisements
Presentazioni simili
Operazioni fondamentali con gli insiemi
Advertisements

Dispensa a cura del prof. CAVAGNA GIANCARLO Luglio 2002
Definizione Dati un punto O del piano α e un numero reale k ≠ 0, si dice omotetia di centro O e rapporto k la trasformazione del piano in sé che associa.
Precorso di Matematica
MATEMATICA PER L’ECONOMIA
1 A B C D … a b c d … Il concetto di insieme 1
Il linguaggio della Matematica: Insiemi e operazioni
L’Insieme Unione.
Operazioni con gli insiemi Progetto Docente I Edizione Lavoro finale Ipotetica lezione di Matematica Corsista: Marina La Grotta.
OMOLOGIA.
GLI INSIEMI.
LA TEORIA DEGLI INSIEMI
INSIEMI INSIEME= gruppo di oggetti di tipo qualsiasi detti elementi dell’insieme. Un insieme è definito quando viene dato un criterio non ambiguo che.
GLI INSIEMI.
SOTTOINSIEMI, INCLUSIONE
Definizione e caratteristiche
Elementi di Matematica
GLI INSIEMI.
I NUMERI REALI (N, Z, Q, I, R) come ampliamenti successivi
Teoria degli INSIEMI A cura Prof. Salvatore MENNITI.
Il concetto di insieme è un assioma, possiamo dire che è un raggruppamento di oggetti di cui è possibile stabilire con certezza se appartengono o no.
GLI INSIEMI Presentazione a cura della Prof.ssa anNUNZIAta DI BIASE
Teoria degli insiemi LICEO STATALE “P. E. IMBRIANI”
GLI INSIEMI 2^PARTE LE OPERAZIONI.
Dispensa a cura del prof. CAVAGNA GIANCARLO Luglio 2002
ELEMENTI DI GEOMETRIA EUCLIDEA NELLO SPAZIO
A cura di Maria Giovanna Melis
Dispensa a cura del prof. Vincenzo Lo Presti
TEORIA DEGLI INSIEMI INIZIO.
CONCETTO DI INSIEME INSIEME CARATTERISTICA OGGETTIVA Deve avere
AB =x/xA  xB Unione tra insiemi o
Gli insiemi Gli insiemi un insieme è un raggruppamento di elementi (cose, animali, numeri, persone, ecc.) VALIDO PER TUTTI Rappresentazioni Tipi Sottoinsiemi.
Operazioni fondamentali con gli insiemi
Che cosa è un insieme convesso?
Aristotele e la logica L’importanza fondamentale di Aristotele nell’ambito della logica comprende tre campi Quantificatori ( nessuno , qualcuno, tutti.
× × = 1 ESEMPI DI LUOGHI GEOMETRICI Luoghi geometrici
Dispensa a cura del prof. CAVAGNA GIANCARLO Luglio 2002
Calcolo combinatorio e probabilità
L’addizione e la sottrazione nell'Insieme N dei numeri naturali
Gli Insiemi.
Definizione e caratteristiche
Illustrazione dal “Paradiso Perduto” di Milton (libro VII)
Rappresentazioni Tipi
Gli Insiemi ISISS “Valle Seriana”.
08/04/2017 TEORIA DEGLI INSIEMI In inglese set theory.
Insiemi.
Dispensa a cura del prof. CAVAGNA GIANCARLO Luglio 2002
Algebra di Boole ?.
Equazione di un luogo geometrico nel piano cartesiano
Topologia di R Intervallo aperto Intervallo chiuso
GLI INSIEMI SI INDICA CON IL NOME INSIEME MATEMATICO
Insiemi DE VITIS GABRIELE.
Teoria degli Insiemi Concetto di Insieme Proprietà caratteristica
Operazioni con gli insiemi
A B C D … Insiemi e sottoinsiemi A ESEMPIO
TEORIA ELEMENTARE DEGLI INSIEMI
Elementi di Logica Teoria degli insiemi Proff. A. Albanese – E. Mangino Dipartimento di Matematica e Fisica “E. De Giorgi” - Università del Salento Precorso.
LA TEORIA DEGLI INSIEMI. Il concetto di insieme è un concetto primitivo La parola insieme (o comunità, gregge, raccolta,...) la usiamo molto spesso: l’insieme.
31/05/ L’INSIEME in ambito matematico è un gruppo di oggetti di cui si può stabilire se un elemento appartiene all’insieme o non appartiene.
Introduzione alla LOGICA MATEMATICA Corso di Matematica Discreta. Corso di laurea in Informatica. Prof. Luigi Borzacchini IV. Introduzione elementare alla.
GLI INSIEMI per la classe 1ai Prof: Paolo Govoni
Luoghi di punti In geometria il termine
1 TEORIA DELLA PROBABILITÁ. 2 Cenni storici i primi approcci alla teoria della probabilità sono della metà del XVII secolo (Pascal, Fermat, Bernoulli)
Cenni sull'insiemistica
Gli insiemi Per insieme in senso matematico si intende un raggruppamento di elementi che possono essere individuati con assoluta certezza A i n s.
Le relazioni tra due insiemi
Definizione e caratteristiche
PON NUZZI A.S Esperto: Prof. Ugo Morra
TEORIA ELEMENTARE DEGLI INSIEMI.
Definizione e caratteristiche
Transcript della presentazione:

Insiemi Operazioni fondamentali con gli insiemi

Simbologia

Insieme intersezione Dati due insiemi, A e B, si chiama loro intersezione l’insieme degli elementi appartenenti contemporaneamente sia ad A sia a B. A B Nella figura la parte tratteggiata in rosso rappresenta l’intersezione

Insieme intersezione Quando due insiemi A e B non hanno elementi in comune si dicono disgiunti. A B

Simbologia

Insieme intersezione Quando due insiemi A e B non hanno elementi in comune si dicono disgiunti. A B

. . Insieme intersezione Esempio Con i diagrammi di Eulero-Venn a b c

. . Insieme intersezione Esempio Con i diagrammi di Eulero-Venn a b c

Insieme unione Chiamasi unione di due insiemi A e B l’insieme degli elementi appartenenti ad A o a B. A B Nella figura la parte colorata in turchese rappresenta l’unione

Insieme unione Chiamasi unione di due insiemi A e B l’insieme degli elementi appartenenti ad A o a B. A B Nella figura la parte colorata in turchese rappresenta l’unione

. . Insieme unione Esempio Con i diagrammi di Eulero-Venn a b c d e A

. . Insieme unione Esempio Con i diagrammi di Eulero-Venn a b c d e A

Insieme complementare Si definisce complementare di un insieme A rispetto ad un insieme ambiente o universo U, l’insieme degli elementi di U che non appartengono ad A. Nella figura la parte colorata in verde rappresenta il complementare di A e si può indicare sia con CUA sia con U CUA A =CUA=

Simbologia

Insieme complementare Si definisce complementare di un insieme A rispetto ad un insieme ambiente o universo U, l’insieme degli elementi di U che non appartengono ad A. Nella figura la parte colorata in verde rappresenta il complementare di A e si può indicare sia con CUA sia con U CUA A =CUA=

Insieme differenza Si dice differenza di due insiemi A e B considerati nell’ordine, l’insieme , che indicheremo con A-B, costituito dagli elementi di A che non appartengono a B. A A B B A-B A-B La parte colorata in rosa rappresenta l’insieme differenza

Simbologia

Insieme differenza Si dice differenza di due insiemi A e B considerati nell’ordine, l’insieme , che indicheremo con A-B, costituito dagli elementi di A che non appartengono a B. A A B B A-B A-B La parte colorata in rosa rappresenta l’insieme differenza

Proprietà delle operazioni Le operazioni di intersezione, unione e complementazione godono delle seguenti proprietà: De Morgan