Dispensa a cura del prof. CAVAGNA GIANCARLO Luglio 2002

Slides:



Advertisements
Presentazioni simili
Corsi di allenamento 2013 Congetturare e dimostrare.
Advertisements

Le rette.
Operazioni fondamentali con gli insiemi
Dispensa a cura del prof. CAVAGNA GIANCARLO Luglio 2002
Precorso di Matematica
Il gioco del 15 Il gioco del quindici fu inventato da Sam Loyd piu' di un secolo fa. Lo scopo del gioco e' quello di ordinare le caselle dal numero 1 al.
MATEMATICA PER L’ECONOMIA
1 A B C D … a b c d … Il concetto di insieme 1
CON CONTAMINAZIONI TRATTE DAI FONDAMENTI DELLA GEOMETRIA DI D.HILBERT
Il linguaggio della Matematica: Insiemi e operazioni
L’Insieme Unione.
Operazioni con gli insiemi Progetto Docente I Edizione Lavoro finale Ipotetica lezione di Matematica Corsista: Marina La Grotta.
GEOMETRIA DESCRITTIVA DINAMICA
Geometria descrittiva dinamica Questa presentazione si propone di concludere la trattazione della legge geometrico-descrittiva dell Appartenenza e/o contenenza.
Indagine insiemistica sulla doppia proiezione ortogonale di Monge A questo punto, ricapitolando e sintetizzando, possiamo raggruppare come di seguito le.
Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The.
GLI INSIEMI.
LA TEORIA DEGLI INSIEMI
INSIEMI INSIEME= gruppo di oggetti di tipo qualsiasi detti elementi dell’insieme. Un insieme è definito quando viene dato un criterio non ambiguo che.
GLI INSIEMI.
SOTTOINSIEMI, INCLUSIONE
Definizione e caratteristiche
PROGETTO LAUREE SCIENTIFICHE
Elementi di Matematica
GLI INSIEMI.
I NUMERI REALI (N, Z, Q, I, R) come ampliamenti successivi
Teoria degli INSIEMI A cura Prof. Salvatore MENNITI.
Corso di Matematica Discreta I Anno
GLI INSIEMI Presentazione a cura della Prof.ssa anNUNZIAta DI BIASE
Teoria degli insiemi LICEO STATALE “P. E. IMBRIANI”
GLI INSIEMI 2^PARTE LE OPERAZIONI.
Dispensa a cura del prof. CAVAGNA GIANCARLO Luglio 2002
ELEMENTI DI GEOMETRIA EUCLIDEA NELLO SPAZIO
Dispensa a cura del prof. Vincenzo Lo Presti
TEORIA DEGLI INSIEMI INIZIO.
CONCETTO DI INSIEME INSIEME CARATTERISTICA OGGETTIVA Deve avere
AB =x/xA  xB Unione tra insiemi o
Gli insiemi Gli insiemi un insieme è un raggruppamento di elementi (cose, animali, numeri, persone, ecc.) VALIDO PER TUTTI Rappresentazioni Tipi Sottoinsiemi.
Operazioni fondamentali con gli insiemi
ESTENSIONI SEMPLICI e TEOREMA DELL’ELEMENTO PRIMITIVO
Aristotele e la logica L’importanza fondamentale di Aristotele nell’ambito della logica comprende tre campi Quantificatori ( nessuno , qualcuno, tutti.
Dispensa a cura del prof. CAVAGNA GIANCARLO Luglio 2002
Gli Insiemi.
Insiemi Operazioni fondamentali con gli insiemi.
Definizione e caratteristiche
Illustrazione dal “Paradiso Perduto” di Milton (libro VII)
Rappresentazioni Tipi
Gli Insiemi ISISS “Valle Seriana”.
08/04/2017 TEORIA DEGLI INSIEMI In inglese set theory.
Insiemi.
1 GLI INSIEMI Cartelli Ylenia Classe ID.
Topologia di R Intervallo aperto Intervallo chiuso
GLI INSIEMI SI INDICA CON IL NOME INSIEME MATEMATICO
Insiemi DE VITIS GABRIELE.
ELEMENTI DI LOGICA del Prof. Giovanni Ianne
Teoria degli Insiemi Concetto di Insieme Proprietà caratteristica
Operazioni con gli insiemi
A B C D … Insiemi e sottoinsiemi A ESEMPIO
TEORIA ELEMENTARE DEGLI INSIEMI
Elementi di Logica Teoria degli insiemi Proff. A. Albanese – E. Mangino Dipartimento di Matematica e Fisica “E. De Giorgi” - Università del Salento Precorso.
LA TEORIA DEGLI INSIEMI. Il concetto di insieme è un concetto primitivo La parola insieme (o comunità, gregge, raccolta,...) la usiamo molto spesso: l’insieme.
31/05/ L’INSIEME in ambito matematico è un gruppo di oggetti di cui si può stabilire se un elemento appartiene all’insieme o non appartiene.
GLI INSIEMI per la classe 1ai Prof: Paolo Govoni
Cenni sull'insiemistica
Gli insiemi Per insieme in senso matematico si intende un raggruppamento di elementi che possono essere individuati con assoluta certezza A i n s.
Presentazione a cura della ANNUNZIATA DI BIASE
Definizione e caratteristiche
PON NUZZI A.S Esperto: Prof. Ugo Morra
TEORIA ELEMENTARE DEGLI INSIEMI.
Definizione e caratteristiche
Transcript della presentazione:

Dispensa a cura del prof. CAVAGNA GIANCARLO Luglio 2002 GLI INSIEMI Dispensa a cura del prof. CAVAGNA GIANCARLO Luglio 2002

RAPPRESENTAZIONE A A = Marta; Andrea; Matteo; Martina; Simone; Anna Per rappresentare un qualsiasi insieme possiamo utilizzare tre diversi metodi. Si voglia ad esempio rappresentare l’insieme che chiameremo “A” di tutti gli amici di Marco che sono: Andrea, Marta, Simone, Matteo, Anna, Martina. A Con i diagrammi di Eulero Venn: 1 Marta  Simone  Andrea  Martina Attraverso la rappresentazione tabulare (estensiva): Matteo  Anna 2 A = Marta; Andrea; Matteo; Martina; Simone; Anna Enunciando la proprietà caratteristica (intensiva): 3 A = xx è amico di Marco

APPARTENENZA “” U A B a  e  b  f  d c  B = b; d A = a; b; d; e; f e  b  f  U = a; b; c; d; e; f d c  a  A, a  U, a  B, b  B, b  A, b  U c  U, c  B, c  A

SOTTOINSIEMI, INCLUSIONE “, ” B è un SOTTOINSIEME IMPROPRIO di A U A Ogni insieme è un SOTTOINSIEME (IMPROPRIO) di sé stesso a  B C b  d L’insieme vuoto è un SOTTOINSIEME (IMPROPRIO) di ogni insieme c  A è un SOTTOINSIEME DI U B  A   C,   B, ….. C è un SOTTOINSIEME DI B A U C B A  A, B  B,…..

SOTTOINSIEMI, INCLUSIONE U = a; b; c; d; e; f A A = a; b; d; e; f a  B e  b  B = b; d f  d b; d  B c  a; b; d  A d  B

APPARTENENZA e INCLUSIONE b     d L’elemento b appartiene all’insieme A L’insieme d;b è uguale ad A L’insieme b è strettamente incluso nell’insieme A d;b  A oppure d;b = A b  A b  A

INSIEME COMPLEMENTARE. A A = CuA= xx U e x  A  U b  d  A E’ l’insieme degli elementi di U c  e  a  f  g  A =a; b; g Che non appartengono ad A

INSIEME COMPLEMENTARE. CBA CBA= xx B e x  A  B b  d  A E’ l’insieme degli elementi di B c  e  a  f  g  CBA =a; b; g Che non appartengono ad A

E’ l’insieme degli elementi che appartengono sia ad A sia a B INTERSEZIONE “A  B” E’ l’insieme degli elementi che appartengono sia ad A sia a B A  B = xx A e x  B  B A A  B

CASI PARTICOLARI DELL’INTERSEZIONE A  A = A Se A  B = , A e B si dicono DISGIUNTI A   =  A  A =  Se B  A allora A  B = B A  U = A

E’ l’insieme degli elementi UNIONE “A  B” E’ l’insieme degli elementi che appartengono ad A “o” a B, cioè ad almeno uno dei due insiemi dati. A  B = xx A o x  B  B A A  B

UNIONE di insiemi DISGIUNTI L’UNIONE degli insiemi A e B è l’insieme degli elementi che appartengono ad A “o” a B, cioè ad almeno uno dei due insiemi dati. A B A  B

CASI PARTICOLARI DELL’UNIONE A  A = A A   = A A  A = U Se B  A allora A  B = A

A  B = a; b; c; d; e; f; g; h; i; l A = a; b; c; d; e; f B = d; e; f; g; h; i; l B A g  a  d  b  i  e  h  c  f  l  A  B = d; e; f A  B = a; b; c; d; e; f; g; h; i; l

DIFFERENZA. “A - B” B A A - B A - B = xx A e x  B  E’ l’insieme formato da tutti gli elementi di A che non appartengono a B A B A - B Si tolgono ad A tutti gli elementi che appartengono a B E’ costituito dagli elementi di A che NON appartengono a B

DIFFERENZA. “A - B”, “B - A”. A = a; b; c; d; e; f B = d; e; f; g; h; i; l B A g  a  d  b  i  e  h  c  f  l  A - B = a; b; c B - A = g; h; i; l

DIFFERENZA. “A - B”, “B - A”. g  a  d  e  h  b  i  c  f  l  B g  A a  d  B - A = g; h; i; l e  h  b  i  c  f  l  B g  a  d  e  h  b  i  A - B = a; b; c c  f  A l 

CASI PARTICOLARI DELLA DIFFERENZA TRA INSIEMI A - A =  A -  = A Se A  B =  allora A - B = A e B - A = B Se B  A allora B - A = 

In rete: http://multifad.formazione.unipd.it/~insiemi/paradossi.htm In questo sito troverete: nozioni fondamentali sugli insiemi; animazioni riguardanti le operazioni fra insiemi; un po’ di storia relativa allo sviluppo della teoria degli insiemi; il paradosso dell’Hotel infinito di Hilbert. http://www.dm.unibo.it/matematica/AlgebraLineare/diz1/insiemi.htm Un ipertesto con brevi note teoriche, alcuni esempi ed esercizi.

Clicca sulla risposta corretta ESERCIZIO N. 1….. C Trova: A  B  C Clicca sulla risposta corretta m  n  B A g  a  d  b  i  e  h  c  f  l  A  B  C = g; h; i; l A  B  C = d A  B  C = d; e; f A  B  C = e; f

Ritorna alla diapositiva TEORIA DEGLI INSIEMI COMPLIMENTI RISPOSTA ESATTA!!!! Ritorna alla diapositiva precedente

Ritorna alla diapositiva TEORIA DEGLI INSIEMI MI DISPIACE RISPOSTA ERRATA!!!! Ritorna alla diapositiva precedente