SOTTOINSIEMI, INCLUSIONE

Slides:



Advertisements
Presentazioni simili
Operazioni fondamentali con gli insiemi
Advertisements

Dispensa a cura del prof. CAVAGNA GIANCARLO Luglio 2002
Precorso di Matematica
MATEMATICA PER L’ECONOMIA
1 A B C D … a b c d … Il concetto di insieme 1
CON CONTAMINAZIONI TRATTE DAI FONDAMENTI DELLA GEOMETRIA DI D.HILBERT
Il linguaggio della Matematica: Insiemi e operazioni
L’Insieme Unione.
Operazioni con gli insiemi Progetto Docente I Edizione Lavoro finale Ipotetica lezione di Matematica Corsista: Marina La Grotta.
PROIEZIONI ORTOGONALI 2
GLI INSIEMI.
LA TEORIA DEGLI INSIEMI
INSIEMI INSIEME= gruppo di oggetti di tipo qualsiasi detti elementi dell’insieme. Un insieme è definito quando viene dato un criterio non ambiguo che.
Definizione e caratteristiche
LE FUNZIONI Definizione Campo di esistenza e codominio
Ordini Parziali - Reticoli
Elementi di Matematica
GLI INSIEMI.
I NUMERI REALI (N, Z, Q, I, R) come ampliamenti successivi
Teoria degli INSIEMI A cura Prof. Salvatore MENNITI.
Corso di Matematica Discreta I Anno
Il concetto di insieme è un assioma, possiamo dire che è un raggruppamento di oggetti di cui è possibile stabilire con certezza se appartengono o no.
PROBABILITÀ La probabilità è un giudizio che si assegna ad un evento e che si esprime mediante un numero compreso tra 0 e 1 1 Evento con molta probabilità.
GLI INSIEMI Presentazione a cura della Prof.ssa anNUNZIAta DI BIASE
Teoria degli insiemi LICEO STATALE “P. E. IMBRIANI”
GLI INSIEMI 2^PARTE LE OPERAZIONI.
Dispensa a cura del prof. CAVAGNA GIANCARLO Luglio 2002
ELEMENTI DI GEOMETRIA EUCLIDEA NELLO SPAZIO
2. Premesse all’analisi infinitesimale
Dispensa a cura del prof. Vincenzo Lo Presti
Si ringraziano per il loro contributo gli alunni della
TEORIA DEGLI INSIEMI INIZIO.
CONCETTO DI INSIEME INSIEME CARATTERISTICA OGGETTIVA Deve avere
AB =x/xA  xB Unione tra insiemi o
Gli insiemi Gli insiemi un insieme è un raggruppamento di elementi (cose, animali, numeri, persone, ecc.) VALIDO PER TUTTI Rappresentazioni Tipi Sottoinsiemi.
Operazioni fondamentali con gli insiemi
Dispensa a cura del prof. CAVAGNA GIANCARLO Luglio 2002
Gli Insiemi.
Insiemi Operazioni fondamentali con gli insiemi.
Definizione e caratteristiche
Gli Insiemi ISISS “Valle Seriana”.
08/04/2017 TEORIA DEGLI INSIEMI In inglese set theory.
Dispensa a cura del prof. CAVAGNA GIANCARLO Luglio 2002
Congettura di Collatz (Lothar Collatz, 1937)
1 GLI INSIEMI Cartelli Ylenia Classe ID.
Topologia di R Intervallo aperto Intervallo chiuso
GLI INSIEMI SI INDICA CON IL NOME INSIEME MATEMATICO
Insiemi DE VITIS GABRIELE.
Teoria degli Insiemi Concetto di Insieme Proprietà caratteristica
Elementi di teoria delle probabilità
Operazioni con gli insiemi
A B C D … Insiemi e sottoinsiemi A ESEMPIO
TEORIA ELEMENTARE DEGLI INSIEMI
LA TEORIA DEGLI INSIEMI. Il concetto di insieme è un concetto primitivo La parola insieme (o comunità, gregge, raccolta,...) la usiamo molto spesso: l’insieme.
31/05/ L’INSIEME in ambito matematico è un gruppo di oggetti di cui si può stabilire se un elemento appartiene all’insieme o non appartiene.
Introduzione alla LOGICA MATEMATICA Corso di Matematica Discreta. Corso di laurea in Informatica. Prof. Luigi Borzacchini IV. Introduzione elementare alla.
GLI INSIEMI per la classe 1ai Prof: Paolo Govoni
1 TEORIA DELLA PROBABILITÁ. 2 Cenni storici i primi approcci alla teoria della probabilità sono della metà del XVII secolo (Pascal, Fermat, Bernoulli)
Cenni sull'insiemistica
Gli insiemi Per insieme in senso matematico si intende un raggruppamento di elementi che possono essere individuati con assoluta certezza A i n s.
Le relazioni tra due insiemi
Teoria dei Sistemi di Trasporto Tematica 4: Elementi minimi di teoria della probabilità.
PRIMI CONCETTI ESEMPI INTRODUTTIVI DEFINIZIONI INTRODUZIONE ALLE FUNZIONI.
Presentazione a cura della ANNUNZIATA DI BIASE
Intervalli di numeri reali
Definizione e caratteristiche
GLI INSIEMI Istituto comprensivo “ M. G. Cutuli”
PON NUZZI A.S Esperto: Prof. Ugo Morra
Insiemi 25/06/2019.
Definizione e caratteristiche
Transcript della presentazione:

SOTTOINSIEMI, INCLUSIONE U = a; b; c; d; e; f A A = a; b; d; e; f a  B e  b  B = b; d f  d b; d  B c  a; b; d  A d  B

APPARTENENZA e INCLUSIONE b     d L’elemento b appartiene all’insieme A L’insieme d;b è uguale ad A L’insieme b è strettamente incluso nell’insieme A d;b  A oppure d;b = A b  A b  A

INSIEME COMPLEMENTARE. A A = CuA= xx U e x  A  U b  d  A E’ l’insieme degli elementi di U c  e  a  f  g  A =a; b; g Che non appartengono ad A

INSIEME COMPLEMENTARE. CBA CBA= xx B e x  A  B b  d  A E’ l’insieme degli elementi di B c  e  a  f  g  CBA =a; b; g Che non appartengono ad A

E’ l’insieme degli elementi che appartengono sia ad A sia a B INTERSEZIONE “A  B” E’ l’insieme degli elementi che appartengono sia ad A sia a B A  B = xx A e x  B  B A A  B

CASI PARTICOLARI DELL’INTERSEZIONE A  A = A Se A  B = , A e B si dicono DISGIUNTI A   =  A  A =  Se B  A allora A  B = B A  U = A

E’ l’insieme degli elementi UNIONE “A  B” E’ l’insieme degli elementi che appartengono ad A “o” a B, cioè ad almeno uno dei due insiemi dati. A  B = xx A o x  B  B A A  B

UNIONE di insiemi DISGIUNTI L’UNIONE degli insiemi A e B è l’insieme degli elementi che appartengono ad A “o” a B, cioè ad almeno uno dei due insiemi dati. A B A  B