Regolazione dell’Espressione Genica

Slides:



Advertisements
Presentazioni simili
Lezione IX-X martedì 25-X-2011
Advertisements

Marcatori Molecolari Introduzione Marcatori proteici DNA
METODICHE MOLECOLARI APPLICATE A CAMPIONI PARAFFINATI DI
Biologia.blu B - Le basi molecolari della vita e dell’evoluzione
Promotori eucariotici
Cercare le sequenze in banca dati
La regolazione dell’espressione genica
Metodi di sequenziamento
Corso di ingegneria genetica
DUPLICAZIONE del DNA.
Escherichia coli Molto studiato da un punto di vista genetico, fisiologico e strutturale Molto studiato da un punto di vista genetico, fisiologico e strutturale.
Chip a DNA: un esempio pratico
MARCATURA ISOTOPICA Radioisotopi più usati per marcare gli acidi nucleici Isotopo Emivita Tipo di emissione Energia di emissione 3H.
Amplificazione DNA Clonaggio PCR.
Editing dellRNA. Editing dellmRNA per la Apolipoproteina B umana.
TECNICHE DI BIOLOGIA MOLECOLARE
Array di oligonucleotidi
Espressione genica.
Il sequenziamento genico
FACOLTA’ DI MEDICINA E CHIRURGIA
Perché Real-Time? Real time PCR Analisi PCR quantitativa
Clonaggio: vettori plasmidici
Elettroforesi di Acidi Nucleici Southern e Northern Blot
PCR (polymerase chain reaction)
Sequenziamento enzimatico del DNA (Sanger)
Trasferimento secondo Southern (Southern blot)
Proteina DNA RNA Fenotipo Citoplasma Nucleo Regolazione trascrizionale
Corso di Biologia Molecolare - Laurea Triennale
CORSO DI BIOLOGIA - Programma
CORSO DI BIOLOGIA - Programma
PCR quantitativa “Real-Time” e sue applicazioni in ambito biomedico
Espressione di un gene eucariotico
Che cosa offre biotechrabbit ? Prodotti per l’isolamento degli Adici Nucleici (DNA – RNA)
Metodi per studiare l’espressione dei geni
Scopi della analisi molecolare
AMPLIFICAZIONE IN VITRO DEL DNA “REAZIONE A CATENA DELLA POLIMERASI
Ibridazione degli acidi nucleici e
Flusso delle informazioni biologiche. In ogni istante della propria vita ogni cellula umana contiene: 46 cromosomi ( geni) mRNA diversi.
Divisione in gruppi di tre persone
PCR Scelta dello stampo Scelta dei primer.
Come si studia il DNA.
Computational analysis of data by statistical methods
Computational analysis of data by statistical methods
Cenni di Bioinformatica
Dal neolitico al Xxi secolo.
IV LEZIONE Dati d'espressione genica: ESTs SAGE Microarray NCBI GEO.
POSTGENOMICA O GENOMICA FUNZIONALE
Tecniche della Biologia Molecolare
Condizioni che possono destabilizzare la doppia elica provocando la separazione delle due catene (denaturazione) 1.Alte temperature 2.pH alcalino estremo.
Ibridazione degli acidi nucleici e
POLIMERASE CHAIN REACTION (PCR)
Arrays di acidi nucleici
Clonaggio per espressione e clonaggio funzionale
PCR Polymerase Chain Reaction GENOMA UMANO: CIRCA GENI OTTENERE MOLTE COPIE DELLA STESSA SEQUENZA CLONAGGIO VETTORE: molecola di DNA che permette.
LABORATORIO 2: ANALISI DI RESTRIZIONE DI DNA GENOMICO In questa esercitazione campioni di DNA (es.: da fago λ e da plasmide pET28) verranno digeriti con.
ESTRAZIONE DNA ANALISI QUANTITATIVA
Metodi di sequenziamento
Diagnostica microbiologica molecolare
Determinazione dei microrganismi negli alimenti Argomenti e obbietivi Necessità e problematiche nella determinazione dei microrganismi negli alimenti Metodologie.
MARCATORE genetico  carattere mendeliano che può essere utilizzato per seguire la segregazione di una particolare regione cromosomica lungo un pedigree.
Microarrays di DNA, cDNA e oligonucleotidi
Con la tecnica della PCR si può amplificare in modo specifico e ripetitivo qualsiasi segmento di DNA compreso tra due particolari sequenze nucleotidiche.
Tecnica della PCR (Polymerase Chain Reaction) Serve a identificare e amplificare (produrre copie) di una sequenza specifica dI DNA (gene) Utilizza: primer.
REAZIONE A CATENA DELLA POLIMERASI Polymerase Chain Reaction (PCR)
REAZIONE A CATENA DELLA POLIMERASI Polymerase Chain Reaction (PCR)
POSTGENOMICA O GENOMICA FUNZIONALE
Transcript della presentazione:

Regolazione dell’Espressione Genica Puo’ essere regolata in una delle seguenti sei fasi: NUCLEUS CYTOSOL inactive mRNA degradazione DNA RNA transcript mRNA mRNA trascrizione Maturazione trasporto traduzione protein controllo dell’attivita’ inactive protein

Metodi per studiare l’espressione dei geni Northern blot Trascrittasi Inversa -PCR (RT-PCR) Ibridazione In situ Trascrizione In vitro DNA Microarray

Purificazione dell’RNA Procedura Lisi delle cellule con un reagente che dissocia le nucleoproteine e inibisce la RNAsi Rimozione delle proteine Precipitazione specifica dell’RNA

Northern blot Per determinare la dimensione e la quantita’ di specifici mRNA Studi sull’espressione genica

Northern blot Elettroforesi dell’RNA in gel contenente formaldeide per mantenere l’RNA in forma completamente lineare Trasferimento dell’RNA su una membrana Ibridazione con una sonda marcata

+ - tampone elettroforetico 100V 0,2A + - generatore di corrente gel di agarosio scatola elettroforetica tampone elettroforetico es. TAE (4mM Tris-acetato, 1mM EDTA, pH 8.0)

Separa le molecole in base alla dimensione Gel Elettroforesi- Separa le molecole in base alla dimensione

Trasferimento su supporto solido

Trasferimento dal gel alla membrana

Dopo il trasferimento gel membrana

Preparare la sonda per il Northern Blot

Ibridazione La sonda marcata e’ aggiunta ad una soluzione contenente il supporto solido che lega l’RNA da analizzare

Lavaggio Rimozione della sonda non legata al supporto solido

Rivelazione degli ibridi Esposizione di un film se la sonda e’ marcata radioattivamente Se la sonda e’ marcata con un enzima si procede alla reazione enzimatica che produce colore direttamente sul supporto solido

Northern blot La rivelazione avviene usando: DNA marcato con radioattivo(32P) DNA marcato con un enzima che catalizza una reazione che produce luce o colore

Northern blot Fig. 5. Northern blot analysis of E. lagascae total RNA from leaves (L), germinating seeds (Se), roots (Ro) and stems (St). The blot was hybridized with probes for ElLTP1 (top panel) and ElLTP2 (middle panel). The bottom panel shows ethidium bromide staining of the gel before blotting. The numbers to the left indicate approximate transcript sizes in kb

Svantaggi del Northern Blot Richiede grandi quantita’ di RNA E’ un processo lungo e laborioso

AMPLIFICAZIONE IN VITRO DEL DNA “REAZIONE A CATENA DELLA POLIMERASI (PCR)”

PCR: reazione polimerasica a catena Inventata da Kary Mullis negli anni ‘80 (premio Nobel 1993) Serve per ottenere una grande quantita’ di una specifica sequenza di DNA in vitro Puo’ amplificare un tratto di DNA per piu’ di 1 milione di volte

ELEMENTI NECESSARI ALLA REAZIONE: 1- DUE OLIGONUCLEOTIDI COMPLEMENTARI A DUE REGIONI CHE SI TROVANO SU FILAMENTI OPPOSTI DEL DNA STAMPO AI LATI DELLA REGIONE CHE SI VUOLE AMPLIFICARE 2- DNA STAMPO CHE CONTENGA LA REGIONE DA AMPLIFICARE 3- POLIMERASI TERMOSTABILE (NON VIENE DENATURATA SE PORTATA A 95° C) 4- I 4 DESOSSINUCLEOTIDI TRIFOSFATI

IL PROCESSO DI PCR PREVEDE UN CERTO NUMERO DI CICLI. OGNI CICLO CONSISTE DI 3 PASSAGGI: 1- DENATURAZIONE: TEMP. 95°C. IL DNA STAMPO VIENE DENATURATO, I DUE FILAMENTI SI SEPARANO 2-APPAIAMENTO: 55°C CIRCA. I PRIMERS SI APPAIANO CON IL DNA STAMPO 3- SINTESI: TEMP.72°C E’ OTTIMALE PER IL FUNZIONAMENTO DELLA Taq (Termus aquaticus) POLIMERASI

PCR: Reazione a catena della polimerasi Metodo di amplificazione del DNA usando una polimerasi termostabile quale la Taq DNA polimerasi, uno stampo di DNA, un eccesso di primers e dideossinucleotidi (dNTP) in un buffer.

PCR: Reazione a catena della polimerasi

PCR: Reazione a catena della polimerasi

PCR: amplificazione n.ro cicli 1 3 10 15 20 25 30 n.ro sequenze bersaglio 2 256 8192 262.144 8.388.608 268.435.456 La sequenza bersaglio è la sequenza di DNA sintetizzata tra i due primers Occorre ~1g di DNA per l’analisi di una sequenza o una digestione con enzimi di restrizione tali da poter essere visibili in elettroforesi. Se vi sono ~5 pg di DNA/cellula umana (5x10-12g) allora ~1 g of DNA potrebbe essere isolato da 200.000 cellule ma avremmo un miscuglio di tutti i geni. In 1  g di DNA genomico, una copia singola di un gene (300 bp) equivarrebbe a ~0.1 pg di DNA. Questo 0.1 pg di DNA potrebbe essere amplificato mediante PCR producendo 0.8  g in 25 cicli e 27  g in 30 cicli.

PCR VANTAGGI: Sensibilita’ Rapidita’ Si presta all’analisi simultanea di molti campioni (high throughput) Si presta all’analisi simultanea di diverse sequenze sullo stesso campione Si presta all’analisi di DNA degradato o incluso in mezzi strani, o fissato SVANTAGGI: Sensibilita’ (rischio di contaminazioni-falsi positivi) Variabile efficienza di amplificazione a seconda della sequenza Richiede conoscenza di base delle sequenze da amplificare e messa a punto per coppie di oligonucleotidi di innesco (primers) Può sintetizzare frammenti relativamente corti La sintesi è imprecisa e introduce errori nella sequenza (la Taq pol non possiede attività 3’->5’ esonucleasica)

Esempi di utilizzo della PCR Su DNA: segnalare la presenza o meno di sequenze specifiche (mutazioni, inserzioni virali, micro-organismo patogeni) -> PCR DIAGNOSTICA Amplificare frammenti specifici da usare in seguito come sonde oppure da “clonare” Su RNA messaggero (RT-PCR): segnalare la presenza di specifiche molecole di RNA (espressione genica, presenza di RNA di micro-organismi infettivi) Amplificare frammenti specifici da usare in seguito come sonde oppure da “clonare” - isolare cDNA specifici per determinati geni.

Trascrittasi Inversa-PCR Rivelazione di mRNA molto rari Analisi di RNA con pochissime quantita’

Procedura Purificazione dell’RNA Aggiungere i primer mescolare RNA con la trascrittasi inversa per effettuare la sintesi del primo filamento di cDNA Aggiungere la DNA polimerasi termostabile per effettuare la sintesi del secondo filamento di cDNA e per amplificarlo con i cicli della PCR

Trascrittasi inversa - PCR (RT-PCR) mRNA 5’ AAAAA 3’ Primer 1 3’ TTTTT 5’ reverse transcriptase (RNA-dependent DNA polymerase) mRNA 5’ AAAAA 3’ cDNA 3’ TTTTT 5’ Remove RNA (RNase A) cDNA 3’ TTTTT 5´ Add PCR primers Primer 2 5’ 3’ TTTTT 3’ 5’ Primer 3 Add Taq polymerase. Run PCR

RT-PCR semi-quantitativa: Selezione del numero di cicli necessari per trovarsi nella fase di amplificazione esponenziale Number of molecules Number of cycles

RT-PCR in tempo reale Utilizza particolari combinazioni di coloranti fluorescenti la cui fluorescenza viene smascherata quando la catena di DNA viene sintetizzata oppure che vengono intercalati nella catena nascente durante la reazione di amplificazione. L’utilizzo di appositi apparecchi permette la misurazione della fluorescenza accumulata in tempo reale, proporzionale al numero di molecole amplificate e quindi al numero di molecole presenti in partenza

Polymerase Chain Reaction: resa Resa teorica: 2n P=(2)n T Il prodotto (P) incrementa esponenzialmente con il numero di cicli di PCR (n) Il prodotto di PCR dipende da T,numero di copie di template di partenza Log[DNA] N° cicli termici Esponenziale Lineare Plateau Prodotto variabile

Perché Real-Time? Misura l'amplificazione in tempo reale durante la fase esponenziale della PCR, quando cioè l'efficienza di amplificazione è influenzata minimamente dalle variabili di reazione, permettendo di ottenere risultati molto più accurati rispetto alla PCR tradizionale "end point"

RT-PCR quantitativa Rilevamento della fluorescenza associata all’amplificazione Il prodotto di PCR non viene analizzato su gel di agarosio Analisi del prodotto di fluorescenza tramite computer Plot lineare Incremento di fluorescenza Cicli di PCR

Analisi tramite software

Chimiche fluorescenti per PCR Real-Time La fluorescenza si genera durante la PCR per effetto di diverse possibili reazioni chimiche Le chimiche principali sono basate sia sul legame di coloranti fluorescenti che si intercalano nella doppia elica di DNA, come il SYBR Green, sia sull'ibridazione di sonde specifiche.

SYBR Green: principio SYBR Green I Utilizza una molecola fluorescente non specifica che si lega al solco minore del DNA

SYBR Green All’inizio del processo di amplificazione, la miscela di reazione contiene DNA denaturato, primers e la molecola fluorescente

SYBR Green Dopo l’annealing dei primers, si legano poche molecole fluorescenti alla doppia elica.

SYBR Green Durante l’elongazione si verifica un aumento di fluorescenza che corrisponde all’ aumento del numero di copie dell’amplicone

Reverse transcriptase-PCR (= RT-PCR) Epoxide hydrolase + + + + - - - - RT l l se r st l se r st pl 2027 1904 1584 947 831 564

Ibridazione dell’RNA in situ Rivelazione di mRNA direttamente su tessuti messi su vetrini da microscopio Preparation of RNA probe with in vitro transcription T7/T3 or SP6 promoter

RNA in situ hybridization Colour substrate: nitro blue tetrazolium (NBT) + 5-bromo-4-chloro-3-indolyl phosphate (BCIP) Fig. 7. RNA in situ hybridization with antisense (a-c) and sense (d) RNA probes for ElLTP1. E. lagascae seedlings were collected 7 days after sowing. co Cotyledon, en endosperm, hy hypocotyl, am apical meristem, ro root

Il livello di RNA presente nella cellula non necessariamente riflette direttamente i livelli di trascrizione del gene Per poter asserire che un gene viene attivato TRASCRIZIONALMENTE occorre poterne visualizzare l’attivita’

Il saggio di “run-on” permette di determinare il livello di trascrizione di un gene Purificare i nuclei + NTP, 32P GTP Trascrizione: la catena nascente e’ radioattiva Estrazione dell’RNA Ibridazione a cDNA immobilizzato su filtro

Sintesi differenziale di 12 geni codificanti mRNA epato-specifici analizzata tramite run-on Lodish Figure 10-23

Northern blotting RNA isolation Probe labeling Gel electophoresis AAAAAA Probe labeling pBS-SemaIII dATP dGTP dTTP dCTP Gel electophoresis Hybridization Blotting Autoradiography Northern blotting allows easy and more or less quantitative detection of a limited number of transcripts. Total RNA (or mRNA) is separated on an agarose gel and transferred to a nylon membrane. This membrane is then incubated with a radiolabeled probe derived from the gene of interest. After hybridization, size and amount of the corresponding transcript in the RNA pool are revealed by autoradiography. The method is not very sensitive.

reverse Northern blotting Reverse Northern blotting is the opposite of Northern blotting. Here, specific probes are immobilized on a nylon membrane and subsequently hybridized to radiolabeled cDNA derived a pool of mRNA. Multiple identical membranes can be hybridized with different cDNA pools, and the relative intensity of the hybridization signal for each spot will reveal the extent of regulation of the corresponding transcripts. This method depends has evolved into the modern cDNA macro and micro array techniques.

cDNA arrays (continued) macro-arrays low-density filter-supported radioactive probes (duplicates) low sensitivity only cDNA clones spotted cheap cDNA arrays were discussed in detail by Sabine Spijker.

cDNA arrays (continued) micro-arrays high-density glass-supported fluorescent probes (single slide) high sensitivity ability to spot oligonucleotides very expensive cDNA arrays were discussed in detail by Sabine Spijker.

I microarrays Tessuto della prostata, normale Tessuto della prostata, tumorale Un microarray è un supporto solido sul quale sono stati posizionati diverse migliaia di cDNA in spot separati. Ciascuno spot rappresenta un gene, in quanto contiene numerose copie di un cDNA corrispondente a tale gene. In questo esempio i cDNA sono stati posizionati su di un vetrino, simile ai normali vetrini usati per l’istologia.

Microarray technology Probes Microarray synthetized by photolithography or EST/oligo “linking” http://www.ym.edu.tw/excellence/HBP/HBP_CP4/procedure.htm

utilizzo dei microarrays Tessuto della prostata, normale utilizzo dei microarrays Tessuto della prostata, tumorale si confrontano i profili di espressione genica di due campioni differenti. E’ necessario estrarre le molecole di mRNA dai due campioni.

Arrays Probe DNAs are “spotted” onto a glass slide Each array will have thousands of spots (typically 3000 to 30000) Each spot corresponds to a particular gene e.g. β-actin

Targets RNA is extracted from tissues or cells RNA is copied to DNA test reference mRNA Targets cDNA RNA is copied to DNA labelled DNA is fluorescently labelled pooled Samples are pooled

Hybridisation Labelled target DNA hybridised to array Fluorescence of each spot indicates how much of particular RNA was present in both samples

Data Processing Normalisation Further analysis Scanner Spot-finding Hybridised Array Normalisation Normalised Ratios Further analysis Images Scanner Ratios Spot-finding

Cy3 Cy3 Cy5 Cy5 Cy3 Cy5                                                                                            test reference

Spot-finding (1) Software identifies grid of spots and maps individual spot locations

Confronto dei profili di espressione genica in due campioni cellulari diversi Estrazione dell’mRNA dai 2 campioni di cellule che si vogliono confrontare (1) (2) Conversione in cDNA (6) Immagine a colori raffigurante il microarray Marcatura con 2 fluorocromi diversi (3) Eccitazione della fluorescenza tramite laser (4) (5) Riconoscimento tra i cDNA provenienti dai 2 campioni e quelli già presenti sul microarray

STUDIO DEI PROMOTORI: siti di legame dei fattori di trascrizione EMSA

Trans Factor Methods: EMSA

Trans Factor Methods: EMSA Electromobility “Shift”

Trans Factor Methods: Consensus Sequence Capture

Il saggio EMSA identifica interazioni tra DNA e proteine anticorpo

Il saggio EMSA identifica interazioni tra DNA e proteine Competizione con stesso sito, sito analogo, sito mutato Identificazione dei fattori coinvolti tramite “supershift” con anticorpi Lodish Figure 10-7

Il footprint con DNasi I permette di localizzare il sito di interazione tra proteina e DNA Lodish Figure 10-6