La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

LNS LNS Apertura nuova sigla in CSN3: NUMEN_CSN3 NUclear Matrix Elements for Neutrinoless double beta decay RN : C.Agodi e F.Cappuzzello LNS, Ct, To, Ge(2016-2018)

Presentazioni simili


Presentazione sul tema: "LNS LNS Apertura nuova sigla in CSN3: NUMEN_CSN3 NUclear Matrix Elements for Neutrinoless double beta decay RN : C.Agodi e F.Cappuzzello LNS, Ct, To, Ge(2016-2018)"— Transcript della presentazione:

1 LNS LNS Apertura nuova sigla in CSN3: NUMEN_CSN3 NUclear Matrix Elements for Neutrinoless double beta decay RN : C.Agodi e F.Cappuzzello LNS, Ct, To, Ge(2016-2018) Clementina Agodi, Cagliari CSN3 15 - settembre - 2015

2 A basic question in modern Physics LNS LNS Neutrinos play a fundamental role in various areas of modern physics from nuclear and particle physics to cosmology.  1930: W.Pauli hypothesis of existence of neutrino to explain the energetic spectrum of electrons emitted in  decay  1935 : Maria Goeppert Mayer described for the first time the 2  decay  1937: E.Majorana article: ”Teoria simmetrica dell’elettrone e del positrone” Il Nuovo Cimento 14 (1937) 171  1986: first discovery of 2  decay predicted by Maria Goeppert Mayer in 1935 (today found in ≈12 nuclei)  1998: discovery of neutrino oscillations and the non-zero mass of neutrinos, predicted by Pontecorvo in 1957 Described for the first time by Maria Goeppert-Mayer (1935), Clementina Agodi, Cagliari CSN3 15 - settembre - 2015

3 The very rare 0νββ decay, mediated by the weak interaction, is potentially the best way to probe the Majorana or Dirac nature of neutrino and to extract its effective mass. LN S LN S Double β-decay 2 double β-decay Respect the conservation low. Does not distinguish between Dirac and Majorana Experimentally observed in several nuclei 0 double β-decay Neutrino has mass Neutrino is Majorana particle Violates the leptonic number conservation Experimentally not observed Forbidden in the Standard Model 82 Se, 100 Mo, 48 Ca, 76 Ge, … and anti- are the same and anti- can be distinguished Clementina Agodi, Cagliari CSN3 15 - settembre - 2015

4 LNS LNS ExperimentIsotopeLabStatus GERDA 76 GeLNGSPhase I completed Migration to Phase II CUORE0 /CUORE 130 TeLNGSData taking / Construction Majorana Demonstrat or 76 GeSURFConstruction SNO+ 130 TeSNOLA B R&D / Construction SuperNEM O demonstrat or 82 Se (or others) LSMR&D / Construction Candles 48 CaKamiok a R&D / Construction COBRA 116 CdLNGSR&D Lucifer 82 SeLNGSR&D DCBAmany[Japan]R&D AMoRe 100 Mo[Korea]R&D MOON 100 Mo[Japan]R&D 0  Search for 0  decay: a worldwide race Neutrino mass explanations: all are based on some form of new physics beyond the Standard Model. Measurement of the neutrino masses and mixing might guide the way toward a Grand Unified Theory of fundamental interactions.

5 Klapdor-Kleingrothaus et al. NIM A 522 (2004) PLB 586 (2004) Klapdor-Kleingrothaus et al., NIM A 522 (2004), PLB 586 (2004): 71.7 kg yr Bgd 0.17 / (kg yr keV) 28.75 ± 6.87 events (bgd:~60) Claim: 4.2  evidence for 0 ββ reported T 1/2 0ν = 1.19 x10 25 yr Claim from the re-analysis of the Heidelberg-Moscow data Unconfirmed (and controversial) claim Dominates the field since 2004 Difficult to scrutinize by experiments not using 76 Ge because of NME uncertainties A later publication by the same group ( Mod. Phys. Lett. A 21, 1547 (2006)) reports T 1/2 0ν = 2.23 x10 25 yr after PSD analysis. Inconsistencies have been pointed out (missing efficiency factors!) in the conversion counts  T 1/2 LNS LNS The unconfermed claim on 76 Ge

6 In the 0νββ the decay rate can be expressed as a product of independent factors, that also depends on a function containing physics beyond the Standard Model throught the masses and the mixing coefficients of the neutrinos species : Thus, if the M 0νββ nuclear matrix elements were known with sufficient precision, the neutrino mass could be established from 0νββ decay rate measurements. LNS LNS new physics inside ! The role of nuclear physics Clementina Agodi, Cagliari CSN3 15 - settembre - 2015

7 LNS LNS Evaluation of Calculations (still sizeable uncertainties): QRPA, Large scale shell model, IBM ….. Measurements (still not conclusive for 0  ): (  +,  - ) single charge exchange ( 3 He,t) electron capture transfer reactions … E. Caurier, et al., PRL 100 (2008) 052503 N. L. Vaquero, et al., PRL 111 (2013) 142501 J. Barea, PRC 87 (2013) 014315 T. R. Rodriguez, PLB 719 (2013) 174 F.Simkovic, PRC 77 (2008) 045503. F.Iachello et al. NPB 237-238 (2013) 21 - 23 A.Giuliani and A. Poves, Adv. in High Energy Phys., A.857016 (2012) N. Auerbach, Ann. Of Phys. 192 (1989) 77 S.J. Freeman and J.P. Schiffer JPG 39 (2012) 124004 D.Frekers, Prog. Part. Nucl. Phys. 64 (2010) 281 J.P. Schiffer, et al., PRL 100 (2008) 112501 D.Frekers et al. NPA 916 (2013)219 - 240 Courtesy of Prof. F.Iachello State of the art NME calculations

8 LNS LNS The idea : HI-DCE as experimental tool The idea : HI-DCE as experimental tool towards the 0  Nuclear Matrix Element determination Clementina Agodi, Cagliari CSN3 15 - settembre - 2015

9 Double charge exchange reactions LNS LNS 2 Sequential nucleon transfer mechanism 4 th order: Brink’s Kinematical matching conditions D.M.Brink, et al., Phys. Lett. B 40 (1972) 37 3 Meson exchange mechanism 2 nd order 1 Induced by strong interaction Possibility to go in both directions 3 4 HI Double charge exchange reactions are characterized by transitions where the nuclear charge is changed by two units leaving the mass number unchanged Clementina Agodi, Cagliari CSN3 15 - settembre - 2015

10 Previous experimental attempts LN S LN S Few experimental attempts  not conclusive because of the very poor yields in the measured energy spectra and the lack of angular distributions, due to the very low cross-sections involved.  not easy to measure, in the same experimental conditions, the different competitive reaction channels. θ lab = 8° Q = -14.1 MeV 24 Mg( 18 O, 18 Ne) 24 Ne @ 124 MeV J. Cerny, et al., Proc. 3° Int. Conf. on Nuclei Far from Stability, Cargese, 1976 10° < θ lab < 30° Q = -4.8 MeV D.M.Drake, et al., Phys. Rev. Lett. 45 (1980) 1765 C.H.Dasso, et al., Phys. Rev. C 34 (1986) 743 40 Ca( 14 C, 14 O) 40 Ar @ 51 MeV RCNP - Osaka Benchmark for developing the DCE reaction model, using DCE as a powerful tool for unstable nuclei.

11 0  vs HI-DCE 1.Initial and final states: Parent/daughter states of the 0 ββ are the same as those of the target/residual nuclei in the DCE; 2.Spin-Isospin mathematical structure of the transition operator: Fermi, Gamow-Teller and rank-2 tensor together with higher L components are present in both cases; for single CEX : Factorization of the charge exchange cross-section for single CEX : In the hypothesis of a surface localized process (for direct quasi elastic processes). In a simple model one can assume that the DCE process is just a second order charge exchange, where projectile and target exchange two uncorrelated isovector virtual mesons. generalization to DCE : unit cross-section Clementina Agodi, Cagliari CSN3 15 - settembre - 2015 LN S LN S

12 Superconducting Cyclotron and MAGNEX spectrometer @ LNS LN S LN S K800 Superconducting Cyclotron in full operation since 1996. It can accelerate from Hydrogen to Uranium. Maximum nominal energy is 80 MeV/u. Optical characteristicsMeasured values Maximum magnetic rigidity1.8 T m Solid angle50 msr Momentum acceptance-14.3%, +10.3% Momentum dispersion for k= - 0.104 (cm/%)3.68 Achieved resolution Energy  E/E  1/1000 Angle Δθ  0.2° Mass Δm/m  1/160 Achieved resolution Energy  E/E  1/1000 Angle Δθ  0.2° Mass Δm/m  1/160 MAGNEX spectrometerSuperconducting Cyclotron F. Cappuzzello et al., MAGNEX: an innovative large acceptance spectrometer for nuclear reaction studies, in Magnets: Types, Uses and Safety (Nova Publisher Inc., NY, 2011) pp. 1–63.

13 LNS LNS  18 O 7+ beam from LNS Cyclotron at 270 MeV (10 pnA)  40 Ca solid target of 300 μg/cm 2  Ejectiles detected by the MAGNEX spectrometer  Angular setting 18 O + 40 Ca 18 F + 40 K 18 Ne + 40 Ar 20 Ne + 38 Ar 16 O + 42 Ca Measured Not measured The pilot experiment: 40 Ca( 18 O, 18 Ne) 40 Ar@LNS 2n-transfer: 40 Ca( 18 O, 16 O) 42 Ca @ 270 MeV 2p-transfer: 40 Ca( 18 O, 20 Ne) 38 Ar @ 270 MeV 40 Ca( 18 O, 18 F) 40 K x-section (2MeV < E x < 3MeV) ≈ 0.5 mb/sr Extracted B(GT) = 0.087 B(GT) from ( 3 He,t) = 0.083 Y. Fujita Clementina Agodi, Cagliari CSN3 15 - settembre - 2015

14 116 Sn( 18 O, 18 F) 116 In @ 25 MeV/u Extracted upper limit for B(GT) < 0.8 B(GT) from (d, 2 He) = 0.4 S.Rakers, et al., PRC 71 (2005) 054313 x-section (within 1 MeV) ≈ 0.17 mb/sr 40 Ca( 18 O, 18 F) 40 K @ 15 MeV/u Preliminary analysis! 3.5° < θ lab < 4.5° x-section (2MeV < E x < 3MeV) ≈ 0.5 mb/sr Extracted B(GT) = 0.087 B(GT) from ( 3 He,t) = 0.083 Y. Fujita HI Single CEX @ LNS LNS LNS Clementina Agodi, Cagliari CSN3 15 - settembre - 2015

15 LNS LNS dσ DCE /dΩ=11μb/sr at θ cm =0 0 The 40 Ar 0 + ground state is well separated from both the first excited state 40 Ar 2 + at 1.46 MeV and the 18 Ne excited state at 1.887 MeV FWHM ~ 0.5 MeV ! Measured energy spectrum of 40 Ar at very forward angles with an energy resolution of FWHM ~ 0.5 MeV. Differential cross-section of the transition 40 Ca g.s. ( 18 O, 18 Ne) 40 Ar g.s. @ 270 Mev The position of the minima is well described by a Bessel function : such an oscillation pattern is not expectd in complex multistep transfer reactions. preliminary 40 Ca 38 Ar 40 Ar 42 Ca DCE: preliminary results Clementina Agodi, Cagliari CSN3 15 - settembre - 2015

16 Pure GT Pure F Pauli blocking about 0.14 Pauli blocking corrected result 1.9 to speculate on 48 Ca LNS LNS To speculate: a comparison between 48 Ca and 40 Ca very preliminary NME Clementina Agodi, Cagliari CSN3 15 - settembre - 2015

17 Experimental limits Determination of nuclear matrix elements seems to be at our reach… BUT : 1. one order of magnitude more yield is necessary,for most favorable cases ; 2. ( 18 O, 18 Ne) is of β + β + kind while most of the research on 0νββ is on the opposite side; 3. Some reactions of β - β - kind have a smaller B(GT): a reduction of the yield is foreseen ; 4. Gas target will be necessary; 5. Sometimes energy resolution of ≈ half MeV is not enough to separate the g. s. form excited states in the final nucleus: coincident detection of  -rays is necessary; 6. A strong fragmentation of the double GT strength is known in the nuclei of interest. Upgraded set-up to work with two orders of magnitude more current than the present Substantial change in the technologies used in CS and in the MAGNEX detector LNS LNS Upgraded set-up to work with two orders of magnitude more current than the present Substantial change in the technologies used in CS and in the MAGNEX detector

18 MAGNEX Upgrade LNS LNS substitution of the present Focal Plane Detector (FPD) gas tracker with a GEM tracker system; 1 substitution of the wall of silicon pad stopping detectors with a wall of telescopes based on SiC-CsI detectors; 2 introduction of an array of detectors for measuring the coincident  -rays; 3 enhancement of the maximum magnetic rigidity. 4 Call di CSN5

19 From the pilot experiment towards the “hot cases”: The four phases of NUMEN project  Phase1: the experiment feasibility 40 Ca( 18 O, 18 Ne) 40 Ar @ 270 MeV already done: the results demostrate the technique feasibility.  Phase2: toward “few hot” cases optimizing experimental conditions and getting first result Upgrading of CS and MAGNEX, preserving the access to the present facility. Tests will be crucial.  Phase3: the facility upgrade Disassembling of the old set-up and re-assembling of the new ones will start: about 18-24 months  Phase4: the experimental campaign High beam intensities (some p  A) and long experimental runs to reach integrated charge of hundreds of mC up to C, for the experiments in coincidences, for all the variety of isotopes for 0 ββ decay ( 48 Ca, 82 Se, 96 Zr, 100 Mo, 110 Pd, 124 Sn, 128 Te, 136 Xe, 148 Nd, 150 Nd, 154 Sm, 160 Gd, 198 Pt). year20132014201520162017201820192020 Phase1 Phase2 Phase3 Phase4 LNS LNS PRELIMINARY TIME TABLE 202… Luglio 2014 The Evaluation Committee, composed of Francesco Iachello, Yale University,(Chair), Muhsin Harakeh, University of Groningen, Dieter Frekers, University of Münster: Strongly supports the exploratory phases 1-2 of the project. Presidenza INFN 22 July 2014 The Committee therefore recommends that Phases 1-2 with the upgrade of the detector system be approved with highest priority …

20 The NUMEN Holy Graal: the unit cross section LNS LNS Studying if the σ DCE is a smooth function of E p and A is the most ambitious goal of our project This requires that a systematic set of appropriate data is built, facing the relative experimental challanges connected with the low cross sections and resolution requests and development of calculations. A new generation of DCE constrained 0  NME theoretical calculations The measured DCE cross sections provide a powerful tool for tuning nuclear structure theory, probing the same 0νββ initial and final wave functions, in order to give very stringent constraints in the NME estimation Providing relative NME information on hot cases of 0  : the ratio of measured cross sections can give a model independent way to compare the sensitivity of different half-life experiments. This could impact in future development of the field. The NUMEN The NUMEN goals 1 1 2 3

21 NUMEN @ International Conferences  Neutrino Oscillation Workshop Conca Specchiulla (Otranto, Lecce, Italy) September 7-14, 2014  37th Brazilian Meeting on Nuclear Physics, RTFNB 2014; Maresias Beach HotelMaresias, Sao Paulo; Brazil; 8 September 2014  Neutrinos and Dark Matter in Nuclear Physics 2015 J une 1-5, 2015, Jyväskylä, Finland  10 th M E D E X '15 meeting Matrix Elements for the Double-beta-decay Experiments Prague, June 09 th - 12 th, 2015  4th INTERNATIONAL CONFERENCE ON NUCLEAR REACTION MECHANISMS Varenna (Italy), Villa Monastero June 15 - 19, 2015  XXI International School on Nuclear Physics and Applications, & International Symposium on Exotic Nuclei ( ISEN-2015 )September 6 - 12, 2015 Varna, Bulgaria  Mazurian Lakes Conference on Physics september 2015  …. Clementina Agodi, Cagliari CSN3 15 - settembre - 2015 LNS LNS

22  Esperimenti per misure di sezioni d’urto di reazioni di doppio scambio di carica al CS (LNS) con MAGNEX, con richiesta di tempo macchina per le prime reazioni : 116 Sn ( 18 O, 18 Ne) 116 Cd 116 Cd ( 20 Ne, 20 O) 116 Sn a 15 e 30 MeV/u ed a 15 e 25 MeV/u, rispettivamente.  Esperimento ( 3 He,t) all’RCNP di Osaka.Tale esperimento fa parte delle campagne sperimentali, basate su misure ( 3 He,t), di singolo scambio di carica, volte ad identificare il ruolo degli stati 2 -, nel canale intermedio del doppio decadimento beta senza neutrini. Attività 2016 prevista LNS LNS Clementina Agodi, Cagliari CSN3 15 - settembre - 2015

23  Studio e test di prototipi per il nuovo tracciatore a gas, basato su moltiplicatori di elettroni tipo GEM, MICROMEGA o THGEM. Lo sviluppo dei prototipi è previsto in collaborazione con i colleghi dei LNF e con Rui de Oliveira, responsabile del laboratorio TS-DEM-PMT del CERN. Esperienza nel settore limitata all’uso per minimum ionizing particles (MIP) e a pressioni dell’ordine dell’atmosfera e oltre. L’effetto dell’ion backflow a bassa pressione va pertanto studiato e potrebbe portare a soluzioni ibride. TS-DEM-PMT del CERN eventuali sviluppi custom per NUMEN. Attività 2016 prevista: R&D From Multiwire gas tracker  to GEM gas tracker From 7 X 5 cm 2 silicon Wall  to 1x1 cm 2 telescopes wall From 1 kHz to 100 kHz Radiation hardness 10 14 ions/cm 2 in ten years of activity Si detector dead @ 10 9 implanted ions/cm 2 LNS LNS Clementina Agodi, Cagliari CSN3 15 - settembre - 2015

24  Studio e test di prototipi degli anodi segmentati. Constraint derivanti dalle condizioni di rate e risoluzione previste per NUMEN, per lavorare a rate fino a 100 KHz/cm sul tracciatore, mantenendo le risoluzioni di tracciatura attuali: limite massimo di circa 2-3 mm nell’estensione orizzontale delle PAD e di circa 5 mm in profondità. Studio sperimentale della geometria per valutare se la configurazione ottimale è quella retta ( PAD rettangolari) oppure quella obliqua ( PAD parallelogrammi). I requisiti in termini di efficienza, risoluzione spaziale e temporale sono gli stessi dell’attuale rivelatore ( efficienza 95%, risoluzione spaziale circa 0.5 mm in x e y, risoluzione angolare circa 3 – 5 mrad). L’ Upgrade sostanziale proposto è sul rate sostenibile da 10 3 ioni/cm  s a 10 5 ioni/ cm  s. Attività 2016 prevista: R&D LNS LNS Clementina Agodi, Cagliari CSN3 15 - settembre - 2015

25  Studio della meccanica dell’odoscopio per l’identificazione degli ioni Tale studio sarà in sinergia con le attività previste nella CALL SICILIA di GR5 (qualora approvata) e sarà finalizzato all’integrazione del telescopio SiC-SiC. Contestualmente saranno studiate anche altre configurazioni possibili per tale scopo.  Studio Integrazione Attività 2016 prevista: R&D LNS LNS Clementina Agodi, Cagliari CSN3 15 - settembre - 2015

26  Studio e realizzazione di prototipi dimostratori di diverse tipologie di schede di elettronica di front end e read-out per l’upgrade del rivelatore di piano focale. 1.acquisizione e studio dei chip di front end selezionati e progettazione delle schede di supporto e di interfaccia. 2.progettazione, realizzazione e test delle schede di read-out e pre- analisi dati. 3.test di interfacciamento schede di front-end e schede di read-out. 4.test di un sistema completo modulare connesso ai primi prototipi di tracciatore in laboratorio. In collaborazione con il ProF.G.De Geronimo (Brokhaven National Laboratory USA). Attività 2016 prevista: R&D LNS LNS Clementina Agodi, Cagliari CSN3 15 - settembre - 2015

27  Studio e sviluppo di modelli teorici. Sviluppo nell’ambito della teoria DWBA: 1.Meccanismo di reazione: migliorare a livello analitico la descrizione teorica delle reazioni di DCE, per approfondire il meccanismo di reazione e gli ingredienti che regolano il processo. 2.Modello per DCE, impiegando diversi approcci (QRPA, shell model, IBM) per inputs connessi alle quantità di struttura nucleare. 3. Confronto previsioni teoriche – dati sperimentali NUMEN. Step fondamentale per testare le approssimazioni adottate nei differenti approcci e identificare le condizioni sperimentali più adatte ad estrarre NME. 4.Studio delle analogie tra la descrizione teorica del neutrino-less double beta decay e delle double charge exchange reactions. Programma in collaborazione con il Prof. Horst Lenske (Giessen University). Attività 2016 prevista LNS LNS Clementina Agodi, Cagliari CSN3 15 - settembre - 2015

28 Informal Workshop on "Challenges in the investigation of double charge-exchange nuclear reactions: towards neutrino-less double beta decay", Laboratori Nazionali del Sud December 1-2, 2015. Attività prevista LNS LNS DCE reactions are the object of a worldwide renewed interest, also for the information that one could extract on the nuclear matrix elements entering the expression of the life time of the double beta decay. This possibility is essentially based on the coincidence of the initial and final state wave-functions in the two classes of processes and the similarity of the transition operators, which in both cases present a given superposition of Fermi, Gamow-Teller and rank- two tensor components with a relevant implicit momentum available. An intense experimental activity on double charge exchange (DCE) reactions is planned at the LNS-Catania, according to the NUMEN project. The aim of the workshop is to critically discuss the status of the art and possible future developments of the theoretical models of DCE reactions, as well as the crucial aspects of the experimental techniques and analyses. A central point would be the identification of the the experimental conditions more suitable to extract, by comparison with the model predictions, the nuclear matrix elements of the DCE process. We also aim at dedicating critical discussions to the analogy between the theoretical description of the neutrino-less double beta decay, and of double charge exchange reactions, to point out differences and similarities between the two processes. The first circular, including the registration form and further information and details about the organization, will be sent shortly. Clementina Agodi, Cagliari CSN3 15 - settembre - 2015

29 DREAMS completamento esperimenti approvati per il 2015 A. Charge exchange -Esperimento DRIP-LINE@LNS sottomesso e approvato all’ultimo PAC (priorità A – tutte e 30 BTU assegnate!). Reazioni da studiare Studio degli stati eccitati del 11Li: DCE: 11B(18O,18Ne)11Li @ 200 MeV Ee 4n transfer 7Li(18O,14O)11Li @ 200 MeV -Esperimento approvato a RCNP Osaka – Beam time da assegnare. (7Li,7Be) @ 70 MeV/u at 0° Grand Raiden spectrometer. B. Collaborazione TRIUMF -TRIUMF Seconda parte esperimento 2015 (fascio da recuperare riassegnato) d(9Li,p)10Li @ 11.13AMeV. - Esperimento Ab-Initio @ LNS Sottomesso e approvato all’ultimo PAC 4He(4He, 4He)4He’ a 55 MeV (Gas target) Studio del a risonanza di monopolo nel 4He. C. Breathing Mode in Exotic Nuclei -Esperimento GREEN @ LNS (FRIBS+MAGNEX) sottomesso e approvato all’ultimo PAC (priorità A – tutte e 52 BTU assegnate ! ) 40Ar @ 35 AMEV per la misura dell’ ISGMR nel nucleo esotico 38 S LNS LNS Clementina Agodi, Cagliari CSN3 15 - settembre - 2015

30 LNS LNS Milestones 2016 Clementina Agodi, Cagliari CSN3 15 - settembre - 2015 1.30-06-2016 - Acquisizione e studio dei chip di front end selezionati e progettazione delle schede di supporto e di interfaccia. Progettazione, realizzazione e test delle schede di read - out e pre - analisi dati. 1.31-10-2016 - Test di interfacciamento schede di front - end e schede di read - out. Test di un sistema completo modulare connesso ai primi prototipi di tracciatore in laboratorio. 1.31-12-2016 - Preparazione test sotto fascio di un sottoinsieme completo di ciascuna tipologia di sistema front - end e read – out. 2.1-12-2016 - Assemblaggio di prototipi per il nuovo tracciatore a gas. 3.30-06-2016 - Simulazioni e disegni di prototipi degli anodi segmentati. 4.31-12-2016 - Preparazione esperimenti ( 18 O, 18 Ne). 5.31-12-2016 - Test dei prototipi degli anodi segmentati. 6.31-12-2016 - Sviluppo del formalismo microscopico delle reazioni di doppio scambio di carica.

31 2015 : 100 k€ per acquisto Si dalla Giunta ( extra budget CSN3) Estimated costs 2016 LNS LNS Clementina Agodi, Cagliari CSN3 15 - settembre - 2015

32 NUMEN_GR3 Manpower @ INFN SEDERicercatore% LNSC.Agodi RN 100 LNSL.Calabretta40 LNSA.Calanna100 LNSF.Cappuzzello RN 100 LNSD.Carbone100 LNSM.Cavallaro100 LNSM.Colonna20 LNSP.Finocchiaro40 LNSE.Greco20 LNSA.Muoio30 LNSL.Pandola20 LNSD.Rifuggiato25 LNSS.Tudisco30 LNSN.Desmuk100 LNSV.Zagatto100 LNSAssegno Senior 100 TOT14 + 18.2 + 1 FTE SEDERicercatore% CTD.Lo Presti RL 50 CTD.Bonanno50 CTF.Longhitano70 CTD.Bongiovanni50 CTA.Foti100 CTV. Branchina20 TOT63.4 FTE SEDERicercatore% TOD.Calvo RL 50 TOF.Iazzi100 TOR.Introzzi100 TOA.Lavagno40 TOS.Ferrero40 TOL.Scaltrito40 TOF.Balestra100 TOL.Busso- TOG.Giraudo10 Tot.94.8 FTE SEDERicercatore% GEE.Santopinto 30 GEPHD 50 Ge Bijker Roelof Roelof 30 Tot.31.1 RicercatoriFTE Totale3217,45 LNS LNS Clementina Agodi, Cagliari CSN3 15 - settembre - 2015

33 Collaborazioni Internazionali Altre Collaborazioni LNS LNS Clementina Agodi, Cagliari CSN3 15 - settembre - 2015

34 SPARES SlideModel.com34

35 R&D Phase2: Total estimated costs LNS LNS K€ 201620172018 2015 : 100 k€ per acquisto Si dalla Giunta ( extra budget CSN3) CSN5

36 l gruppo di Torino intende collaborare al progetto NUMEN partecipando ai run pilota che verranno effettuati ai LNS con l'attuale apparato di misura MAGNEX. Inoltre, all'interno dell'R&D per nuovi rivelatori, intende occuparsi dello studio e del progetto dei piani di anodo per i rivelatori a gas che verranno sviluppati per sostenere un rate dell'ordine di 500 kHz, e che hanno la peculiarita' di dover lavorare con isobutano a circa 10 mbar assoluti. Risulta interessante valutare le prestazioni di gem e micromegas con isobutano a bassa pressione, per questo si intende verificare la disponibilita' di prototipi di piccole dimensioni presso altri gruppi e procedere ad effettuare dei test. Si e' pianificato di effettuare anche alcune simulazioni che riguarda la targhetta, per capirne il suo comportamento con il futuro fascio di ioni, disponibile dopo l'upgrade del ciclotrone. Inoltre, grazie alla assegnazione del tempo di un tecnologo meccanico si intende iniziare a studiare e disegnare la geometria dell'odoscopio, in particolare il posizionamento sulla PCB di supporto. Si intende inoltre studiare come questo sistema si affianchi al rivelatore a gas che si trova immediatamente prima, lungo la traiettoria degli ioni. Il disegno delle varie parti deve essere studiato in stretto contatto con le persone che si occupano dell'R&D dei vari rivelatori e dello sviluppo delle simulazioni in modo tale da contribuire attivamente alle scelte che verranno effettuate gia' tenendo conto dell'integrazione.

37 R&D Phase2: 2016 estimated costs LNS LNSConsumo k€Invent. K€ Exp.activity3 gas bottles6,3 Manutenz. MAGNEX20,0 40 Si100,0 Moduli elettr.15,0 HV FPD8,0 1 PC DAQ1,0 1 SWITCH3,0 Isotopes14,0 Mylar4,5 FPD TrackerGEM (e/o MICROMEGA)4,3 Gas Vessel11,0 Gas flowing system13,0 n.1 gas bottle2,0 Minuteria elettr.0,5 Computing Resources 2 servers (main and backup), the network switch, the fibre channel controllers, the ethernet cards etc. 20,0 DAQ10,0 Totale151,681,0 MissioniEsperime nto Viagg io € Diaria o hotel € Pasti €n.giornin.perso ne n viaggik€ Vancouverd(9Li,p)1 0Li @ 11.13AM eV 15001207316,9 Osaka(7Li,7Be)13001207418,4 OsakaCEX (3He,t) 13001207316,3 Osaka(18O,16 O) 13001207214,3 Sviluppo tracciatore a gas LNF3004003005248,0 CERNGEM5001205224,6 KyotoTest GEM13001205214,6 San Paolo13001205213,8 Mobilità RN 5,0 DanimarcaMagneti Danfysik 5001202211,5 TorinoIngegneri zzazione FPD 3001802003234,1 Contatti teorici Giessen5001205224,4 Genova3002001803121,4 CinaGamma array 13001205213,8 TOTALE67,2 LNS LNS Consumo K€INV.K€Missioni K€Totale K€ 151,681,067,2299,8

38 Il gruppo di Torino intende collaborare al progetto NUMEN partecipando ai run pilota che verranno effettuati ai LNS con l'attuale apparato di misura MAGNEX. Inoltre, all'interno dell'R&D per nuovi rivelatori, intende occuparsi dello studio e del progetto dei piani di anodo per i rivelatori a gas che verranno sviluppati per sostenere un rate dell'ordine di 500 kHz, e che hanno la peculiarita' di dover lavorare con isobutano a circa 10 mbar assoluti. Risulta interessante valutare le prestazioni di gem e micromegas con isobutano a bassa pressione, per questo si intende verificare la disponibilita' di prototipi di piccole dimensioni presso altri gruppi e procedere ad effettuare dei test. Si e' pianificato di effettuare anche alcune simulazioni che riguarda la targhetta, per capirne il suo comportamento con il futuro fascio di ioni, disponibile dopo l'upgrade del ciclotrone. Inoltre, grazie alla assegnazione del tempo di un tecnologo meccanico si intende iniziare a studiare e disegnare la geometria dell'odoscopio, in particolare il posizionamento sulla PCB di supporto. Si intende inoltre studiare come questo sistema si affianchi al rivelatore a gas che si trova immediatamente prima, lungo la traiettoria degli ioni. Il disegno delle varie parti deve essere studiato in stretto contatto con le persone che si occupano dell'R&D dei vari rivelatori e dello sviluppo delle simulazioni in modo tale da contribuire attivamente alle scelte che verranno effettuate gia' tenendo conto dell'integrazione.

39 R&D Phase2: Total estimated costs LNS LNS K€ 201620172018 2015 : 100 k€ per acquisto Si dalla Giunta ( extra budget CSN3) CSN5

40 1.Initial and final states : Parent/daughter states of the 0 ββ are the same as those of the target/residual nuclei in the DCE; 2.Spin-Isospin mathematical structure of the transition operator: Fermi, Gamow-Teller and rank-2 tensor together with higher L components are present in both cases; 3.Large momentum transfer: A linear momentum transfer as high as 100 MeV/c or so is characteristic of both processes; 4.Non-locality : both processes are characterized by two vertices localized in two valence nucleons. In the ground to ground state transitions in particular a pair of protons/neutrons is converted in a pair of neutrons/protons so the non-locality is affected by basic pairing correlation length; 5.In-medium processes : both processes happen in the same nuclear medium, thus quenching phenomena are expected to be similar; 6.Relevant off-shell propagation in the intermediate channel: both processes proceed via the same intermediate nuclei off-energy-shell even up to 100 MeV. 0  vs HI-DCE LNS LNS

41 generalization to DCE : In analogy to the single charge-exchange, the dependence of the cross-section from q is represented by a Bessel function. unit cross-section The factor F  (q,  ) describes the shape of the cross- section distribution as a function of the linear momentum transfer and the excitation energy. In the hypothesis of a surface localized process (for direct quasi elastic processes). T.N.Taddeucci, et al, Nucl. Phys. A 469 (1987) 125 Factorization of the charge exchange cross-section In a simple model one can assume that the DCE process is just a second order charge exchange, where projectile and target exchange two uncorrelated isovector virtual mesons.  -decay transition strengths (reduced matrix elements) for single CEX : C.J Guess,et al, PRC 83 064318 (2011) α= Fermi (F) or Gamow Teller (GT) unit cross-section

42 - + Multiwire gas tracker and  E stage limited to 1 kHz Wall of 60 stopping 7 X 5 cm 2 Silicon detectors surface covered 100 X 21 cm 2 Double-hit probability at 100 kHz > 30% SEGMENTATION !!! From Multiwire gas tracker  to GEM gas tracker From 7 X 5 cm 2 silicon Wall  to 1x1 cm 2 telescopes wall 100 kHz Radiation hardness 10 14 ions/cm 2 in ten years of activity Si detector dead @ 10 9 implanted ions/cm 2 FPD criticity @ high rate

43 Phase2: Experimental campaign LNS LNS Few experiments to investigate the best working conditions The complete net of reactions involving the multi-step transfer processes with the same initial and final nuclei will be studied

44 Preliminary Work Packages LNS LNS

45 In the σ(E p,A) the specificity of the single or double charge exchange is express through the volume integrals of the potentials: the other factors are general features of the scattering. The unit cross section J ST Volume integral of the V ST potential Single charge-exchange Double charge-exchange J ST Volume integral of the V ST GV ST potential, where G is the intermediate channel propagator: E n is a complex number whose imaginary component represents the off-shell propagation through the virtual intermediate states If known σ(E p,A) would allow to determine the NME from DCE cross section measurement, whatever is the strenght fragmentation This is what happens in single charge exchange reactions B(GT;CEX)/B(GT;  -decay)  1 within a few % especially for the strongest transitions ( 7 Li, 7 Be) (d, 2 He) Y. Fujita Prog. Part. Nuc. Phys. 66 (2011) 549 F. Osterfeld Rev. Mod. Phys. 64 (1992) 491 H. Ejiri Phys. Rep. 338 (2000) 256 T.N. Taddeucci Nucl. Phys. A 469 (1997) 125 S. Nakayama PRC 60 (1999) 047303

46  A WHAT NEXT project  Controlled and supported by the INFN board  R&D supported by CSNs  Physics case in sinergy with CSNII  CSNIII will follow the experimental side and R&D on MAGNEX detectors, excluding the SiC  CSNIV will follow the development of suitable theories  CSNV will follow the R&D on SiC NUMEN NUMEN @ INFN

47 8°≤θ lab ≤12° p + 120 Sn  t + 118 Sn g.s. (x 0.5) 1.23 (x 0.2) d I dati acquisiti per vari settaggi del campo dello spettrometro sono mostrati in diversi colori. 120 Sn(p,t) 118 Sn LNS CS @ 35 MeV La presenza di una risonanza larga è stata chiaramente osservata nella regione di energia della GPV. Per estrarne i parametri lo spettro dell’energia di eccitazione è stato fittato nella regione 10 MeV<E*<16 MeV con una funzione Lorenziana + un fondo lineare. La Sezione d’urto della GPV candidata nella regione angolare 8°≤θ lab ≤12° è σ =1.1 ± 0.1 μb B. Mouginot, et al., PRC 83 (2011) 037302 LNS LNS La GPV è una delle manifestazioni più evidenti delle correlazioni particella-particella, fino ad oggi non ci sono forti evidenze sperimentali a differenza di quanto esiste sulle GDR. Le reazioni di trasferimento di 2 neutroni sono ottime sonde per popolare la GPV 120 Sn(p,t) 118 Sn 35 MeV CS @ LNS

48 R&D: a new gas tracker LNS LNS FPD gas vs. GEM tracker Fro m Multiwire gas tracker To GEM gas tracker to go to 100 kHz Ion trajectories limited to about 1 kHz  R&D key issue : GEM-based tracker at low pressure and wide dynamic range  Collaboration with LNF and CERN

49 … for heavier projectiles ( 7 Li, 7 Be) S. Nakayama PRC 60 (1999) 047303 Confirmed on different nuclei: 11 Be, 12 B, 15 C, 19 O (v. F.Cappuzzello et al Nucl.Phys.A 739(2004) 30-56) Microscopic and unified theory of reaction and structure is mandatory for quantitative analyses Best results for transitions among isospin multiplets in the projectiles as ( 7 Li gs(3/2-), 7 Be gs(3/2-) ) ( 18 O gs(0+), 18 F gs(1+) ) should be better than ( 7 Li, 7 Be) even if not really explored to now LNS LNS

50 Connection between  -decay and Single Charge Exchange LNS LNS Y. Fujita Prog. Part. Nuc. Phys. 66 (2011) 549 F. Osterfeld Rev. Mod. Phys. 64 (1992) 491 H. Ejiri Phys. Rep. 338 (2000) 256 T.N. Taddeucci Nucl. Phys. A 469 (1997) 125  ( 3 He,t): In general for B(GT)>0.05 g.s. T z =1/2T z =-1/2 ( 3 He,t)  decay 1.01 2.21 2.74 2.98 0.98 2.17 2.65 2.88 5+5+ 3+3+ 5+5+ 7+7+ 3+3+ 5+5+ 3+3+ 5+5+ 7+7+ 3+3+ 2Jπ2Jπ 2Jπ2Jπ 27 13 Al 14 27 14 Si 13  ( 3 He,t): in general for B(GT) > 0.05  Similar results for the (d, 2 He)

51 Can be determined via charge-exchange reactions in the (n,p) and (p,n) direction ( e.g. (d, 2 He) or ( 3 He,t) ) NME 0  - decay q-transfer like ordinary β-decay (q ~ 0.01 fm -1 ~ 2 MeV/c) only allowed decays possible neutrino enters as virtual particle, q~0.5fm -1 (~ 100 MeV/c) degree of forbiddeness weakened Single state dominance Closure approximation NME: 2  vs 0  LN S LN S NME 2  - decay NOT (easily) accessible via charge-exchange reactions ΔJ = 0 or 1

52 A. Cunsolo, et al., NIMA484 (2002) 56 A. Cunsolo, et al., NIMA481 (2002) 48 F. Cappuzzello et al., NIMA621 (2010) 419 F. Cappuzzello, et al. NIMA638 (2011) 74 A identificationZ identification E resid (ch) F Ne Na X foc (m) E resid (ch) 18 Ne 19 Ne 20 Ne 21 Ne 22 Ne 52 Particle identification LNS LNS

53 FPD criticity @ high rates LNS LNS TRACKER : Space charge limits to few hundreds Hz / cm 1 Silicon detector damaging : 10 detetectors broken/12days beam in 3.6 mC total integrated charge 2

54 R&D: Ion identification LNS LNS High rates : standard technologies ( Si) vs. new ones ( SiC crystals) Silicon detectors  double hits (high segmentation-high costs)  radiation hardness at 0 0 rate limit 10 9 ions/cm 2 Si death in few days  Rate limit SiC crystals  Preserves good Si properties  Much harder to radiations  double hits (high segmentation-high costs)  Rate limit Irradiations tests: around 10 13 ions 12 C @ 62 AMeV at LNS in collaboration with CNR R&D: to built a realiable number of epitaxial SiC, in order to built a telescopes wall of epitaxial SiC (100 μm and surface of 1cm 2 ) for energy loss + CsI (1 cm) for residual energy ; decupling tracking from ion identification.

55 R&D : exclusive measurements LNS LNS SCINTILLATORS ARRAY Detecting γ-rays in coincidende with MAGNEX to:  improve energy resolution from the present limit of ≈ 1 MeV for 50 MeV/u heavy ions (1/1000 of 1 GeV 18 Ne), mandatory for DCE reactions.  Work with an intense flux of γ-rays and neutrons to optimize signal-to-noise ratio and reduce spurious coincidences.  Work done on HPGe and LaBr 3 by other collaborations that can be used for this purpose; CsI or NaI seems more promising for high rates applications.  Members of the Italian-Brasilian (INFN-IFUSP-IFUFF collaboration MoU) collaboration are interested to collaborate on this topics with possible in-kind contribution in the future development of NUMEN.

56 R&D: increase the magnetic rigidity LNS LNS Present day magnetic rigidity : 1.8 Tm i.e. 50 MeV/u 18 Ne 10+ and ≈ 30 MeV/u 20 O 8+ To extend the dynamical conditions magnetic rigidity :  2.8 Tm requires superconducting magnets with present MAGNEX optical layout  Power supply upgrade to obtain 2.1-2.2 Tm i.e. 70 MeV/u 18 Ne 10+ and ≈ 42 MeV/u 20 O 8+

57 Previous experimental attempts LN S LN S Few experimental attempts  not conclusive because of the very poor yields in the measured energy spectra and the lack of angular distributions, due to the very low cross-sections involved.  not easy to measure, in the same experimental conditions, the different competitive reaction channels. θ lab = 8° Q = -14.1 MeV 24 Mg( 18 O, 18 Ne) 24 Ne @ 124 MeV J. Cerny, et al., Proc. 3° Int. Conf. on Nuclei Far from Stability, Cargese, 1976 10° < θ lab < 30° Q = -4.8 MeV D.M.Drake, et al., Phys. Rev. Lett. 45 (1980) 1765 C.H.Dasso, et al., Phys. Rev. C 34 (1986) 743 40 Ca( 14 C, 14 O) 40 Ar @ 51 MeV RCNP - Osaka Benchmark for developing the DCE reaction model, using DCE as a powerful tool for unstable nuclei.

58 58 Gamow-Teller like Fermi like Warning: Normally the coupling constants g A and g V are kept out form the matrix element and we talk of reduced matrix elements For L = 0 decays More about NME LNS LNS

59 NUMEN requirements 1x1 cm 2  E-E telescope thickness of  E stage 100  m thickness of E stage 500-1000  m hard to the radiation damage good energy resolution (1-2 %) High stability (electric and thermal)  Wide bandgap (3.3eV)  lower leakage current than silicon  Signal (for MIP !): Diamond 36e/  m SiC 51e/  m Si89e/  m  more charge than diamond Si/SiC≈2  Higher displacement threshold than silicon  radiation harder than silicon NUMEN RD50 - CERN

60 Klapdor-Kleingrothaus et al. NIM A 522 (2004) PLB 586 (2004) Klapdor-Kleingrothaus et al., NIM A 522 (2004), PLB 586 (2004): 71.7 kg yr Bgd 0.17 / (kg yr keV) 28.75 ± 6.87 events (bgd:~60) Claim: 4.2  evidence for 0 ββ reported T 1/2 0ν = 1.19 x10 25 yr Claim from the re-analysis of the Heidelberg-Moscow data Unconfirmed (and controversial) claim Dominates the field since 2004 Difficult to scrutinize by experiments not using 76 Ge because of NME uncertainties A later publication by the same group ( Mod. Phys. Lett. A 21, 1547 (2006)) reports T 1/2 0ν = 2.23 x10 25 yr after PSD analysis. Inconsistencies have been pointed out (missing efficiency factors!) in the conversion counts  T 1/2 LNS LNS The unconfermed claim on 76 Ge

61 R&D : front -end and read – out electronics LNS LNS ELECTRONICS PROTOTYPES (coll. Sez. Ct) 1)ASIC front – end chip: for FPD chip VMM2 in collaboration with Prof.G.De Geronimo ( Head of Microelectronics-Instrumentation Division of Brookhaven National Laboratory (NY,USA); for PM and PM-like signal chip DRS3 commercial delivered by PSI. 2) Read – out : new generation of FPGA and System On Module (SOM)

62 ( 3 He,t) (β – type) ( d, 2 He) (β + type) Assumption (Fermi Surface Quasiparticle Approximation): all the signs are positive in the coherent sum of the amplitudes, for particle-hole, near to the Fermi surface) Methodology for NME 2  - decay LNS LNS

63 Preliminary time table for NUMEN R&D activities 63 LNS LNS

64 DCE Methodology for NME 0  - decay LNS LNS J. Suhonen, Phys. Lett B607, 87 (2005)

65 B(GT) = 3.27 B(GT) = 1.09 18 O 18 F 18 Ne Y. Fujita, private communication 40 Ar 40 Ca 40 K 4-4- 1+1+ 2.73 g.s. 0+0+ 0+0+ B(GT)=0.069(6) B(GT)=0.023 B(GT) total < 0.15 1+1+ Super-allowed transition GT strength not fragmented GT strength not much fragmented Projectile Target 40 Ca( 18 O, 18 Ne) 40 Ar

66 1s 1/2 1p 1/2 1p 3/2 1d 3/2 1d 5/2 2s 1/2 | 40 Ca g.s. >=0.88|[1d 3/2  1d 3/2 ] 0+ >+0.06 |[1f 7/2  1f 7/2 ] 0+ >+0.06 |[1f 5/2  1f 5/2 ] 0+ > 1f 7/2 1f 5/2 n p n p n p Pauli blocked About 40 Ca ground state

67 1s 1/2 1p 1/2 1p 3/2 1d 3/2 1d 5/2 2s 1/2 40 Ca g.s. 1f 7/2 1f 5/2 n p n p n p 40 K g.s. 40 Ar g.s. 1s 1/2 1p 1/2 1p 3/2 1d 3/2 1d 5/2 2s 1/2 1f 7/2 1f 5/2 Double Charge Exchange on 40 Ca ground state

68 The role of the involved nuclei  Brink’s matching conditions D.M. Brink, Phys. Lett. B 40 (1972) 37-40  The survival of a preformed pair in a transfer process is favoured when the initial and final orbitals are the same LNS LNS  The nucleon transfer reaction cross sections can be deduced from simple dynamic considerations, according to semi-classical arguments, when the incident energy is above the Coulomb barrier.  Assuming a mechanism where a cluster is transferred: the cross section tends to maximize within a Q-window, which depends on the reaction Q gg, on the target, on the projectile radii and on the incident energy.


Scaricare ppt "LNS LNS Apertura nuova sigla in CSN3: NUMEN_CSN3 NUclear Matrix Elements for Neutrinoless double beta decay RN : C.Agodi e F.Cappuzzello LNS, Ct, To, Ge(2016-2018)"

Presentazioni simili


Annunci Google